Page 364 - Shigley's Mechanical Engineering Design
P. 364

bud29281_ch06_265-357.qxd  11/30/2009  4:24 pm  Page 339 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:







                                                                               Fatigue Failure Resulting from Variable Loading  339
                                               curves are most likely to be used with a radial load line we will use the equation given
                                               in Table 6–7, p. 307, expressed in terms of the strength means as
                                                                            ⎡                  ⎤
                                                                                             	2
                                                                        2 ¯ 2
                                                                       r S ut             2S e
                                                                                           ¯
                                                                   ¯
                                                                  S a =     ⎣ −1 +  1 +        ⎦               (6–80)
                                                                         ¯                ¯
                                                                        2S e             rS ut
                                                                                                        ¯      ¯  ¯
                                               Because of the positive correlation between S e and S ut , we increment S e by C Se S e , S ut
                                               by C Sut S ut , and S a by C Sa S a , substitute into Eq. (6–80), and solve for C Sa to obtain
                                                            ¯
                                                                     ¯
                                                     ¯
                                                                         ⎧                          ⎫

                                                                                       2S e (1 + C Se )

                                                                         ⎨              ¯          2 ⎬
                                                                           −1 +  1 +
                                                                                       ¯
                                                               (1 + C Sut ) 2  ⎩      rS ut (1 + C Sut )  ⎭
                                                         C Sa =                                        − 1     (6–81)
                                                                             ⎡
                                                                                                ⎤
                                                                 1 + C Se                   ¯  	2
                                                                                           2S e
                                                                               −1 +  1 +
                                                                             ⎣                  ⎦
                                                                                            ¯
                                                                                          rS ut
                                               Equation (6–81) can be viewed as an interpolation formula for C Sa , which falls between
                                               C Se and C Sut depending on load line slope r. Note that S a = S a LN(1, C Sa ).
                                                                                                ¯
                                                  Similarly, the ASME-elliptic criterion of Table 6–8, p. 308, expressed in terms of
                                               its means is
                                                                                   ¯ ¯
                                                                                 rS y S e
                                                                          ¯                                    (6–82)
                                                                          S a = '
                                                                                 2 ¯ 2
                                                                                r S + S ¯ 2 e
                                                                                   y
                                                                   ¯
                                                                                              ¯
                                                                            ¯
                                                                                       ¯
                                                                               ¯
                                               Similarly, we increment S e by C Se S e , S y by C Sy S y , and S a by C Sa S a , substitute into
                                                                                                      ¯
                                               Eq. (6–82), and solve for C Sa :
                                                                            ,
                                                                            -           2 ¯ 2  ¯ 2
                                                                                       r S + S
                                                                            -             y   e
                                                      C Sa = (1 + C Sy )(1 + C Se ) .                   − 1    (6–83)
                                                                                          2
                                                                               2 ¯ 2
                                                                                             ¯ 2
                                                                              r S (1 + C Sy ) + S (1 + C Se ) 2
                                                                                 y
                                                                                              e
                                                  Many brittle materials follow a Smith-Dolan failure criterion, written deterministi-
                                               cally as
                                                                         nσ a  1 − nσ m /S ut
                                                                             =                                 (6–84)
                                                                          S e  1 + nσ m /S ut
                                               Expressed in terms of its means,
                                                                           ¯       ¯  ¯
                                                                          S a  1 − S m /S ut
                                                                             =                                 (6–85)
                                                                           ¯       ¯  ¯
                                                                          S e  1 + S m /S ut
                                                                                    ¯
                                               For a radial load line slope of r, we substitute S a /r for S m and solve for S a , obtaining
                                                                                                          ¯
                                                                                            ¯
                                                                            ⎡                     ⎤

                                                                     ¯    ¯                 ¯ ¯
                                                                    rS ut + S e           4rS ut S e
                                                               ¯
                                                               S a =        ⎣ −1 +  1 +           ⎦            (6–86)
                                                                       2                (rS ut + S e ) 2
                                                                                          ¯
                                                                                               ¯
                                               and the expression for C Sa is
                                                                ¯
                                                                             ¯
                                                               rS ut (1 + C Sut ) + S e (1 + C Se )
                                                         C Sa =
                                                                           ¯
                                                                         2S a
                                                                                                               (6–87)

                                                                                                     #
                                                                               ¯ ¯
                                                                             4rS ut S e (1 + C Se )(1 + C Sut )
                                                              · −1 +   1 +                             − 1
                                                                             ¯
                                                                           [rS ut (1 + C Sut ) + S e (1 + C Se )] 2
                                                                                          ¯
   359   360   361   362   363   364   365   366   367   368   369