Page 365 - Shigley's Mechanical Engineering Design
P. 365

bud29281_ch06_265-357.qxd  12/02/2009  6:49 pm  Page 340 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:







                 340   Mechanical Engineering Design



                       EXAMPLE 6–20       A rotating shaft experiences a steady torque T = 1360LN(1, 0.05) lbf · in, and at a
                                          shoulder with a 1.1-in small diameter, a fatigue stress-concentration factor  K f =
                                          1.50LN(1, 0.11), K fs = 1.28LN(1, 0.11), and at that location a bending moment of
                                          M = 1260LN(1, 0.05) lbf · in. The material of which the shaft is machined is hot-rolled
                                          1035 with S ut = 86.2LN(1, 0.045) kpsi and S y = 56.0LN(1, 0.077) kpsi. Estimate the
                                          reliability using a stochastic Gerber failure zone.
                                Solution  Establish the endurance strength. From Eqs. (6–70) to (6–72) and Eq. (6–20), p. 288,


                                                      S = 0.506(86.2)LN(1, 0.138) = 43.6LN(1, 0.138) kpsi
                                                       e
                                                     k a = 2.67(86.2) −0.265 LN(1, 0.058) = 0.820LN(1, 0.058)
                                                      k b = (1.1/0.30) −0.107  = 0.870
                                                      k c = k d = k f = LN(1, 0)

                                                      S e = 0.820LN(1, 0.058)0.870(43.6)LN(1, 0.138)
                                                      S e = 0.820(0.870)43.6 = 31.1 kpsi
                                                      ¯
                                                                2
                                                                       2 1/2
                                                     C Se = (0.058 + 0.138 )  = 0.150
                                          and so S e = 31.1LN(1, 0.150) kpsi.
                                          Stress (in kpsi):
                                                                     32(1.50)LN(1, 0.11)1.26LN(1, 0.05)
                                                           32K f M a
                                                      σ a =    3   =                  3
                                                            πd                   π(1.1)
                                                           32(1.50)1.26
                                                      ¯ σ a =     3   = 14.5 kpsi
                                                             π(1.1)
                                                               2
                                                                      2 1/2
                                                     C σa = (0.11 + 0.05 )  = 0.121
                                                                      16(1.28)LN(1, 0.11)1.36LN(1, 0.05)
                                                           16K fs T m
                                                        m =    3   =                   3
                                                             πd                   π(1.1)
                                                           16(1.28)1.36
                                                      ¯ τ m =     3   = 6.66 kpsi
                                                             π(1.1)
                                                                      2 1/2
                                                               2
                                                     C τm = (0.11 + 0.05 )  = 0.121
                                                              2   2 1/2      2     2 1/2


                                                      ¯ σ = ¯σ + 3¯ τ  = [14.5 + 3(0) ]  = 14.5 kpsi
                                                       a    a     a

                                                              2   2 1/2            2 1/2
                                                                 τ

                                                      ¯ σ = ¯σ + 3¯    = [0 + 3(6.66) ]  = 11.54 kpsi
                                                       m    m     m
                                                           ¯ σ a    14.5
                                                       r =    =       = 1.26
                                                           ¯ σ     11.54
                                                            m
                                          Strength: From Eqs. (6–80) and (6–81),
                                                              ⎧                       ⎫

                                                         2
                                                     1.26 86.2 2 ⎨           2(31.1)     2 ⎬
                                                 ¯
                                                S a =           −1 +  1 +               = 28.9 kpsi
                                                                           1.26(86.2)
                                                      2(31.1) ⎩                       ⎭
   360   361   362   363   364   365   366   367   368   369   370