Page 174 -
P. 174

8 The Importance of Ontological Structure: Why Validation by ‘Fit-to-Data’...  171


              and knowledge management. 18th international conference, EKAW. Proceedings. Lecture notes
              in computer science 7603 (pp. 421–425), Galway City, Ireland.
            Object Modelling Group. (2014). Ontology definition metamodel version 1.1. In OMG Document
              Number: Formal/2014–09-02. http://www.omg.org/spec/ODM/1.1/PDF/. Accessed May 2017.
            Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation, and confirmation
              of numerical models in the earth sciences. Science, 263(5147), 641–646.
            Perez, P., Dray, A., Dietze, P., Moore, D., Jenkinson, R., Siokou, C., et al. (2009). An
              ontology-based simulation model exploring the social contexts of psychostimulant use among
              young Australians. International Society for the Study of Drug Policy. http://ro.uow.edu.au/
              smartpapers/36. Accessed May 2017.
            Polhill, J. G. (2015). Extracting OWL ontologies from agent-based models: A Netlogo extension.
              Journal of Artificial Societies and Social Simulation, 18(2), 15. http://jasss.soc.surrey.ac.uk/18/
              2/15.html. Accessed May 2017.
            Polhill, J. G., & Gotts, N. M. (2009). Ontologies for transparent integrated human-natural systems
              modelling. Landscape Ecology, 24, 1255–1267.
            Polhill, J. G., Sutherland, L.-A., & Gotts, N. M. (2010). Using qualitative evidence to enhance an
              agent-based modelling system for studying land use change. Journal of Artificial Societies and
              Social Simulation, 13(2), 10. http://jasss.soc.surrey.ac.uk/13/2/10.html. Accessed May 2017.
            Radax, W., & Rengs, B. (2010). Prospects and pitfalls of statistical testing: Insights from
              replicating the demographic prisoner’s dilemma. Journal of Artificial Societies and Social
              Simulation, 13(4), 1. http://jasss.soc.surrey.ac.uk/13/4/1.html. Accessed May 2017.
            Rossiter, S., Noble, J., & Bell, K. R. W. (2010). Social simulations: Improving interdisciplinary
              understanding of scientific positioning and validity. Journal of Artificial Societies and Social
              Simulation, 13(1), 10. http://jasss.soc.surrey.ac.uk/13/1/10.html. Accessed May 2017.
            Rumbaugh, J. (2003). Object-oriented analysis and design (OOAD). In A. Ralston, E. D. Reilly,
              & D. Hemmendinger (Eds.), Encyclopedia of computer science (4th ed., pp. 1275–1279).
              Chichester: John Wiley and Sons Ltd..
            Schulze, J., Müller, B., Groeneveld, J., & Grimm, V. (2017). Agent-based modelling of social-
              ecological systems: Achievements, challenges, and a way forward. Journal of Artificial
              Societies and Social Simulation, 20(2), 8. http://jasss.soc.surrey.ac.uk/20/2/8.html. Accessed
              May 2017.
            Shalizi, C. R. (2006). Methods and techniques of complex systems science: An overview. In T. S.
              Deisboeck & J. Y. Kresh (Eds.), Complex systems science in biomedicine (pp. 33–114). New
              York, NY: Springer.
            Shearer, R., Motik, B. and Horrocks, I. (2008, 26–27 October). HermiT: A highly-efficient OWL
              reasoner. In OWLED 2008. OWL: Experiences and Directions. Fifth International Workshop,
              Karlsruhe, Germany. http://webont.org/owled/2008/papers/owled2008eu_submission_12.pdf.
              Accessed May 2017.
            Shvaiko, P., & Euzenat, J. (2013). Ontology matching: State of the art and future challenges. IEEE
              Transactions on Knowledge and Data Engineering, 25(1), 158–176.
            Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-
              DL reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2), 51–53.
            Sowa, J. (1999). Knowledge representation: Logical, philosophical, and computational founda-
              tions. Pacific Grove, CA: Brooks/Cole.
            Sure, Y., Staab, S., & Studer, R. (2004). On-to-knowledge methodology (OTKM). In S. Staab &
              R. Studer (Eds.), Handbook on ontologies (pp. 117–132). Berlin: Springer-Verlag.
            ten Broeke, G., van Voorn, G., & Ligtenberg, A. (2016). Which sensitivity analysis method should
              I use for my agent-based model? Journal of Artificial Societies and Social Simulation, 19(1), 5.
              http://jasss.soc.surrey.ac.uk/19/1/5.html. Accessed May 2017.
            Thiele, J. C., Kurth, W., & Grimm, V. (2012). Agent-based modelling: Tools for linking
              NetLogo and R. Journal of Artificial Societies and Social Simulation, 15(3), 8. http://
              jasss.soc.surrey.ac.uk/15/3/8.html. Accessed May 2017.
   169   170   171   172   173   174   175   176   177   178   179