Page 173 -
P. 173
170 G. Polhill
Grubic, T., & Fan, I.-S. (2010). Supply chain ontology: Review, analysis and synthesis. Computers
in Industry, 61, 776–786.
Guarino, N., & Welty, C. A. (2009). An overview of ontoclean. In S. Staab & R. Studer (Eds.),
Handbook on ontologies (pp. 201–220). Berlin: Springer Verlag.
Gurney, K. (1997). An introduction to neural networks. London: UCL Press.
Hanson, S. J., & Burr, D. J. (1990). What connectionist models learn: Learning and representation
in connectionist networks. The Behavioral and Brain Sciences, 13, 471–518.
Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural computation.
Boston, MA: Addison-Wesley.
Holland, J. H. (1986). Escaping brittleness: The possibilities of general-purpose learning algo-
rithms applied to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell, & T. M.
Mitchell (Eds.), Machine learning: An artificial intelligence approach (Vol. II). Burlington,
MA: Morgan Kaufmann.
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5), 359–366.
Horrocks, I., Patel-Schneider, P. F., & van Harmelen, F. (2003). From SHIQ and RDF to OWL:
The making of a web ontology language. Journal of Web Semantics, 1(1), 7–26.
Hu, W., & Qu, Y. (2008). Falcon-AO: A practical ontology matching system. Web Semantics:
Science, Services and Agents on the World Wide Web, 6(3), 237–239.
Hu, W., Qu, Y., & Cheng, G. (2008). Matching large ontologies: A divide-and-conquer approach.
Data & Knowledge Engineering, 67, 140–160.
Huhn, U., & Schulz, S. (2004). Building a very large ontology from medical thesauri. In S. Staab
& R. Studer (Eds.), Handbook on ontologies (pp. 133–150). Berlin: Springer-Verlag.
Jean-Mary, Y. R., Shironoshita, E. P., & Kabuka, M. R. (2009). Ontology matching with semantic
verification. Web Semantics: Science, Services and Agents on the World Wide Web, 7(3), 235–
251.
Jones, D. M., Bench-Capon, T. J. M., & Visser, P. R. S. (1998, 31 August–4 September).
Methodologies for ontology development. In J. Cuena (Ed.), IT & knows: Information
technologies and knowledge systems. Proceedings of a conference held as part of the XV
IFIP world computer congress (pp. 62–75.), Vienna, Austria and Budapest, Hungary. http://
cgi.csc.liv.ac.uk/ tbc/publications/itknows.pdf. Accessed May 2017.
Kalfoglou, Y., & Schorlemmer, M. (2003). Ontology mapping: The state of the art. The Knowledge
Engineering Review, 18(1), 1–31.
Klein, H. K., & Hirschheim, R. A. (1987). A comparative framework of data modelling paradigms
and approaches. The Computer Journal, 30(1), 8–15.
Livet, P., Muller, J.-P., Phan, D., & Sanders, L. (2010). Ontology, a mediator for agent-based
modeling in social science. Journal of Artificial Societies and Social Simulation, 13(1), 3. http:/
/jasss.soc.surrey.ac.uk/13/1/3.html. Accessed May 2017.
Moss, S. (2002). Agent based modelling for integrated assessment. Integrated Assessment, 3(1),
63–77.
Moss, S., & Edmonds, B. (2005). Sociology and simulation: Statistical and qualitative cross-
validation. American Journal of Sociology, 110(4), 1095–1131.
Moss, S. (2008). Alternative approaches to the empirical validation of agent-based models. Journal
of Artificial Societies and Social Simulation, 11(1), 5. http://jasss.soc.surrey.ac.uk/11/1/5.html.
Accessed May 2017.
Müller, J. P. (2010). A framework for integrated modeling using a knowledge-driven approach.
In D. A. Swayne, W. Yang, A. A. Voinov, A. Rizzoli, & T. Filatova (Eds.), Fifth
Biennial international congress on environmental modelling and software, Ottawa, Canada.
http:// www.iemss.org/iemss2010/papers/S21/S.21.08.A%20framework%20for%20integrated
%20modeling%20using%20a%20knowledgedriven%20approach%20-%20JEAN-PIERRE
%20MULLER.pdf. Accessed May 2017.
Ngo, D., & Bellahsene, Z. (2012, October 8–12). YAMCC: A multi-strategy based approach
for ontology matching task. In A. ten Teije, J. Völker, S. Handschuh, H. Stuckenschmidt, M.
d’Acquin, A. Nikolov, N. Aussenac-Gilles, & N. Hernandez (Eds.), Knowledge engineering