Page 228 - The Biochemistry of Inorganic Polyphosphates
P. 228
WU095/Kulaev
WU095-Ref
References
212 March 9, 2004 15:57 Char Count= 0
polyphosphataseactivityofvacuolesoftheyeastSaccharomycescerevisiae.Biochemisty(Moscow),
58, 1053–1061.
N. A. Andreeva, T. V. Kulakovskaya and I. S. Kulaev (1994). Characteristics of the cytosol polyphos-
phatase activity of the yeast Saccharomyces cerevisiae. Biochemistry (Moscow), 59, 1411–1417.
N. A. Andreeva, T. V. Kulakovskaya and I. S. Kulaev (1996). Purification and characterization of
polyphosphatase from Saccharomyces cerevisiae cytosol. Biochemistry (Moscow), 61, 1213–1220.
N. A. Andreeva, T. V. Kulakovskaya, A. V. Karpov, I. A. Sidorov and I. S. Kulaev (1998a). Purification
and properties of polyphosphatase from Saccharomyces cerevisiae cytosol. Yeast, 14, 383–390.
N. A. Andreeva, T. V. Kulakovskaya and I. S. Kulaev (1998b). Purification and properties of ex-
opolyphosphatase isolated from Saccharomyces cerevisiae vacuoles. FEBS Lett., 429, 194–196.
N. A. Andreeva, T. V. Kulakovskaya and I. S. Kulaev (2000). Inorganic polyphosphates and phos-
phohydrolases in Halobacterium salinarium. Mikrobiologiia, 69, 499–505.
N. A. Andreeva, T. V. Kulakovskaya and I. S. Kulaev (2001). Two exopolyphosphatases of the cytosol
of the yeast S. cerevisiae: comparative characterization. Biochemistry (Moscow), 66, 187–194.
N. A. Andreeva, T. V. Kulakovskaya and I. S. Kulaev (2004). Purification and properties of ex-
opolyphosphatase from the cytosol of S. cerevisiae not encoded by the PPX1 gene. Biochemistry
(Moscow), 69, 480–487.
H. App and H. Holzer (1985). Control of yeast neutral trehalase by distinct polyphosphates and
ribonucleic acid. Z. Lebensm. Unters. Forsch., 181, 276–282.
F. Arloing and G. Richard (1921). Les corpuscules metachromatiques des Corynebacteries. Cytologie
experimentale et compare. Rev. Gen. Botan., 33, 88–95.
G. Arrhenius, B. Gedulin and S. Mojzsis (1993). Phosphate in models for chemical evolution. In C.
Ponnamperuma and J. Chela-Flores (Eds), Proceedings of the Conference for Chemical Evolution
andOriginofLife,InternationalCentreforTheoreticalPhysics,Trieste,Italy,A.DeepakPublishing,
Hampton, VA, USA, pp. 1–26.
G. Arrhenius, B. Sales, S. Mojzsis and T. Lee (1997). Entropy and charge in molecular evolution:the
case of phosphate. J. Theor. Biol., 187, 503–522.
D. K. Asamov and M. N. Valikhanov (1972). A study of phosphorus compounds in ripening seeds of
cotton (in Russian), Uzb. Biol. Zh., 2, 3–9.
A. Ascoli (1899). ¨ Uber die Plasmins¨aure. Z. Physiol. Chem., 28, 426–431.
A. E. Ashford, M. Ling-Lee and G. A. Chilvers (1975). Polyphosphate in eucalypt mycorrhizas: a
cytochemical demonstration. New Phytol., 74, 477–453.
A. E. Ashford, P. A. Vesk, D. A. Orlovich, A. L. Markovina and W. G. Allaway (1999). Dispersed
polyphosphate in fungal vacuoles in Eucalyptus pilularis/Pisolithus tinctorius ectomycorrhizas.
Fungal Genet. Biol., 28, 21–33.
A. W. Atkinson, P. C. L. John and B. E. S. Gunning (1974). The growth and division of the single
mitochondrion and other organelles during the cell cycle of Chlorella, studied by quantitative
stereology and three dimensional reconstitution. Protoplasma, 81, 77–109.
G. Auling, F. Pilz, H. J. Busse, S. Karrasch, M. Streichan and G. Schon (1991). Analysis of the
polyphosphate-accumulating microflora in phosphorus-eliminating, anaerobic–aerobic activated
sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacter spp.
Appl. Environ. Microbiol., 57, 3585–3592.
D. Ault-Rich´e and A. Kornberg (1999). Definitive enzymatic assays in polyphosphate analysis. In
H. C. Schr¨oder and W. E. G. M¨uller (Eds), Inorganic Polyphosphates. Biochemistry, Biology,
Biotechnology, Progress in Molecular and Subcellular Biology (Special Issue), Vol. 23, Spinger-
Verlag, Berlin, pp. 241–253.