Page 233 - The Biochemistry of Inorganic Polyphosphates
P. 233
15:57
Char Count= 0
WU095/Kulaev
March 9, 2004
WU095-Ref
References 217
J. A. Callow, L. C. M. Capaccio, G. Parish and P. B. Tinker (1978). Detection and estimation of
polyphosphate in vesicular–arbusculat mycorrhizas. New Phytol., 80, 125–134.
S. Cardona, F. Remonsellez, N. Guiliani and C. A. Jerez (2001). The glycogen-bound polyphosphate
kinase from Sulfolobus acidocaldarius is actually a glycogen synthase. Appl. Environ. Microbiol.,
67, 4773–4780.
S. T. Cardona, F. P. Chaves and C. A. Jerez (2002). The exopolyphosphatase gene from Sulfolobus
solfataricus: characterization of the first gene found to be involved in polyphosphate metabolism
in Archaea. Appl. Environ. Microbiol., 68, 4812–4819.
A. Carlioz and D. Touati (1986). Isolation of superoxyde dismutase mutants in Escherichia coli:is
superoxyde dismutase necessary for aerobic life? EMBO J., 5, 623–630.
N. G. Carr and G. R. Sandhu (1966). Endogenous metabolism of polyphosphates in two photosynthetic
microorganisms. Biochem. J., 99, 29–30.
C. D. Castro, A. J. Meehan, A. P. Koretsky and M. M. Domach (1995). In situ 31 P nuclear
magnetic resonance for observation of polyphosphate and catabolite responses of chemostat-
cultivated Saccharomyces cerevisiae after alkalinization. Appl. Environ. Microbiol., 61, 4448–
4453.
C. D. Castro, A. P. Koretsky and M. M. Domach (1999). NMR-observed phosphate trafficking and
polyphosphate dynamics in wild-type and vph1-1 mutant Saccharomyces cerevisae in response to
stresses. Biotechnol. Prog., 15, 65–73.
C. E. Castuma, R. Huang, A. Kornberg and R. N. Reusch (1995). Inorganic polyphosphates in the
acquisition of competence in Escherichia coli. J. Biol. Chem., 270, 12980–12983.
T. Cavalier-Smith (2001). Obcells as proto-organisms: membrane heredity, lithophosphorylation, and
the origins of the genetic code, the first cells, and photosynthesis. J. Mol. Evol., 53, 555–595.
A. M. Chakrabarty (1998). Nucleoside diphosphate kinase: role in bacterial growth, virulence, cell
signalling and polysaccharide synthesis. Mol. Microbiol., 28, 875–882.
R. Chakraburtty and M. Bibb (1997). The ppGpp synthetase gene (relA) of Streptomyces coelicolor
A3(2) plays a conditional role in antibiotic production and morphological differentiation. J. Bac-
teriol., 179, 5854–5861.
J. Chaloupka and A. Babicky (1957). Komplex ribonukleova kyselina–polyfosfat a jehe deleni Csl.
Microbiology, 2,371–376.
J. Chaloupka and A. Babicky (1958). The ribonucleic acid–polyphosphate complex and its separation.
Folia Biol., 4, 233–138.
D. Chatterji, N. Fujita and A. Ishihama (1998). The mediator for stringent control, ppGpp, binds to
the beta-subunit of Escherichia coli RNA polymerase. Genes Cells, 3, 279–287.
R. Chayen, S. Chayen and E. R. Roberts (1955). Observations on nucleic acid and polyphosphate in
Torulopsis utilis. Biochim. Biophys. Acta, 16, 117–126.
K. Y. Chen (1999). Study of polyphosphate metabolism in intact cells by 31 P-nuclear magnetic res-
onance spectroscopy. In H. C. Schr¨oder and W. E. G. M¨uller (Eds), Inorganic Polyphosphates.
Biochemistry, Biology, Biotechnology, Progress in Molecular and Subcellular Biology (Special
Issue), Vol. 23, Springer-Verlag, Berlin, pp. 253–275.
M. Chen, R. J. Palmer and H. K. Kuramitsu (2002). Role of polyphosphate kinase in biofilm formation
by Porphyromonas gingivalis. Infect. Immunol., 70, 4708–4715.
E. K. Chernysheva (1972). A study of the metabolism of high-molecular polyphosphates, and their
enzymatic depolymerization, in Neurospora crassa (in Russian). Candidate’s Thesis, Moscow.
Moscow State University.
E. K. Chernysheva, M. S. Kritsky and I. S. Kulaev (1971). The determination of the degree of