Page 229 - The Biochemistry of Inorganic Polyphosphates
P. 229

15:57
                                                     Char Count= 0
                        WU095/Kulaev
                                    March 9, 2004
               WU095-Ref
                                                                             References      213
                        D. Ault-Rich´e, C. D. Fraley, C. M. Tzeng and A. Kornberg (1998). Novel assay reveals multiple
                          pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli.
                          J. Bacteriol., 180, 1841–1847.
                        S.Ayraud,B.Janvier,L.SalaunandJ.L.Fauchere(2003).ModificationintheppkgeneofHelicobacter
                          pylori during single and multiple experimental murine infections. Infect. Immunol., 71, 1733–1739.
                        V. Bajaj and P. S. Krishnan (1953). A note on phosphate partition in trichloracetic acid extract of mold
                          tissue. Arch. Biochem. Biophys., 47, 1–5.
                        V. Bajaj, S. P. Damle and P. S. Krishnan (1954). Phosphate metabolism of mold spores. I. Phosphate
                          uptake by the spores of Aspergillus niger. Arch. Biochem. Biophys., 50, 451–460.
                        A. L. Baker and R. R. Schmidt (1963). Intracellular distribution of phosphorus during synchronous
                          growth of Chlorella pyrenoidosa. Biochim. Biophys. Acta, 74, 75–83.
                        A. L. Baker and R. R. Schmidt (1964a). Further studies on the intracellular distribution of phosphorus
                          during synchronous growth of Chlorella pyrenoidosa. Biochim. Biophys. Acta, 82, 336–342.
                        A. L. Baker and R. R. Schmidt (1964b). Induced utilization of polyphosphate during nuclear division
                          in synchronously growing Chlorella. Biochim. Biophys. Acta, 93, 180–182.
                        H. Baltscheffsky (1967a). Inorganic pyrophosphate and the evolution of biological energy transfor-
                          mation. Acta Chem. Scand., 21, 1973–1974.
                        M. Baltscheffsky (1967b). Inorganic pyrophosphate and ATP donors in chromatophores from Rho-
                          dospirillum. Nature (London), 216, 241–243.
                        M. Baltscheffsky (1967c). Inorganic pyrophosphate as an energy donor in pholosynthetic and respira-
                          tory electron transport phosphorylation systems. Biochem. Biophys. Res. Commun., 28, 270–276.
                        M. Baltscheffsky (1969). Reversed energy conversion reactions of bacterial photophospliorylation.
                          Arch. Biochem. Biophys., 133, 46–48.
                        H. Baltscheffsky (1997). Major ‘Anastrophes’ in the origin and early evolution of biological energy
                          conversion. J. Theor. Biol., 187, 495–501.
                        M. Baltscheffsky and H. Baltscheffsky (1992). Inorganic pyrophosphate and inorganic pyrophos-
                          phatase. In L. Ernster (Ed.), Molecular Mechanisms in bioenergetics, Elsevier, Amsterdam, pp.
                          331–348.
                        H.Baltscheffsky,L.-V.vonStedingk,H.W.HeldtandM.Kligenberg(1966).Inorganicpyrophosphate:
                          formation in bacterial photophosphorylation. Science, 153, 1120–1122.
                        M. Baltscheffsky, S. Nadanaciva and A. Schulz (1998). A pyrophosphate synhase gene: molecu-
                          lar cloning and sequencing of the cDNA encoding the inorganic pyrophosphate synthase from
                          Rhodospirillum rubrum. Biochim. Biophys. Acta, 1364, 301–306.
                        M. Baltscheffsky, A. Schulz and H. Baltscheffsky (1999). H –PPases: a tightly membrane-bound
                                                                    +
                          family. FEBS Lett, 457, 527–533.
                        M. Baltzinger, J. P. Ebel and P. Remy (1986). Accumulation of dinucleoside polyphosphates in Sac-
                          charomyces cerevisiae under stress conditions. High levels are associated with cell death. Biochimie,
                          68, 1231–1236.
                        E. S. Baluyot and C. G. Hartford (1996). Comparison of polyphosphate analysis by ion chromatog-
                          raphy and by modified end-group titration. J. Chromatogr., 739, 217–222.
                        G. J. Balzer and R. J. McLean (2002). The stringent response genes relA and spoT are important for
                          Escherichia coli biofilms under slow-growth conditions. Can. J. Microbiol., 48, 675–680.
                        Y. Barak and J. Rijn (2000). Atypical polyphosphate accumulation by the denitrifying bacterium
                          Paracoccus denitrificans. Appl. Environ. Microbiol., 66, 1209–1212.
                        K. Bark, P. Kampfer, A. Sponner and W. Dott (1993). Polyphosphate-dependent enzymes in some
                          coryneform bacteria isolated from sewage sludge. FEMS Microbiol. Lett., 107,133–138.
   224   225   226   227   228   229   230   231   232   233   234