Page 234 - The Biochemistry of Inorganic Polyphosphates
P. 234
WU095/Kulaev
WU095-Ref
References
218 March 9, 2004 15:57 Char Count= 0
polymerization of different inorganic polyphosphate fractions from mycelia of Neurospora crassa
(in Russian). Biokhimiya, 36, 138–142.
A. V. Chetkauskaite, L. L. Grinius and L. M. Mukhin (1988). Stimulating action of polyphosphates on
peptide formation from glycine and phenylalanine amides under abiogenic conditions (in Russian).
Zh. Evol. Biokhim. Fiziol., 24, 465–470.
A. Chi and R. G. Kemp (2000). The primordial high energy compound: ATP or inorganic pyrophos-
phate? J. Biol. Chem., 275, 35677–35679.
B.K.Choi,D.M.HerculesandM.Houalla(2000).Characterizationofpolyphosphatesbyelectrospray
mass spectrometry. Anal Chem., 72, 5087–5091.
H. Chouayekh and M. J. Virolle (2002). The polyphosphate kinase plays a negative role in the control
of antibiotic production in Streptomyces lividans. Mol. Microbiol., 43, 919–930.
R. Cini, D. Chindamo, M. Catenaccio, S. Lorenzini and R. Marcolongo (2000). Density functional
geometry optimization and energy calculations of calcium(II)–triphosphate complexes. Polyphos-
phates as possible dissolving agents for calcium pyrophosphate dihydrate crystals in chondrocal-
cinosis disease. J. Biomol. Struct. Dyn., 18, 155–168.
R. Cini, D. Chindamo, M. Catenaccio, S. Lorenzini, E. Selvi, F. Nerucci, M. P. Picchi, G. Berti and
R. Marcolongo (2001). Dissolution of calcium pyrophosphate crystals by polyphosphates: an in
vitro and ex vivo study. Ann. Rheum. Dis., 60, 962–967.
J. E. Clark (1990). Purification of polyphosphate glucokinase from Propionibacterium shermanii.
In E. A. Dawes (Ed.), Novel Biodegradable Microbial Polymers, Kluwer Academic Publishers,
Dordrecht, The Netherlands, pp. 213–221.
J. E. Clark and H. G. Wood (1987). Preparation of standards and determination of sizes of long-chain
polyphosphates by gel electrophoresis. Anal. Biochem., 161, 280–290.
J. E. Clark, H. Beegen and H. G. Wood (1986). Isolation of intact chains of polyphosphate from
Propionibacterium shermanii grown on glucose or lactate. J. Bacteriol., 168, 1212–1219.
T. E. Cloete and D. J. Oosthuizen (2001). The role of extracellular exopolymers in the removal of
phosphorus from activated sludge. Water Res., 35, 3595–3598.
A. Cohen, N. Perzov, I. Nelson and N. Nelson (1999). A novel family of yeast chaperons involved in
the distrubution of V-ATP ase and other membrane proteins. J. Biol. Chem., 274, 26885–26893.
J. A. Cole and D. E. Hughes (1965). The metabolism of polyphosphates in Chlorobium thio-
sulfatophillium. J. Gen. Microbiol., 38, 65–72.
D. W. Concar, D. Whitford and R. J. Williams (1991). The location of the polyphosphate-binding
sites on cytochrome c measured by NMR paramagnetic difference spectroscopy. Eur. J. Biochem.,
199, 569–574.
D. E. C. Corbridge (1980). Phosphorus. An Outline of its Chemistry, Biochemistry and Technology,
2nd Edn, Elsevier, Amsterdam.
D. L. Correll (1965). Ribonucleic acid–polyphosphate from algae. III. Hydrolysis studies. Plant Cell
Physiol. (Tokyo), 6, 661–670.
D. L. Correll and N. E. Tolbert (1962). Ribonucleic acid–polyphosphate from algae. I. Isolation and
physiology. Plant. Physiol., 37, 627–636.
D. L. Correll and N. E. Tolbert (1964). Ribonucleic acid–polyphosphate from algae. II. Physical and
chemical properties of the isolated complexes. Plant Cell Physiol., 5, 171–191.
J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. Korber and H. M. Lappin-Scott (1995). Microbiol
biofilms. Ann. Rev. Microbiol., 49, 711–745.
R. T. Cowling and H. C. Birnboim (1994). Incoroporation of 32 P orthophosphate into inorganic
polyphosphates by human granulocytes and other human cell types. J. Biol. Chem., 269, 9480–9485.