Page 231 - The Biochemistry of Inorganic Polyphosphates
P. 231
15:57
Char Count= 0
WU095/Kulaev
March 9, 2004
WU095-Ref
References 215
A. N. Belozersky (1959b). Contribution to the discussion at the Symposium The Origin of Life on
Earth (in Russian), Izdatelstvo Akademii Nauk SSSR, Moscow, p. 370.
A. N. Belozersky (1959c). Nucleic acids of microorganisms. In Onzieme Conseil de Chimie, Institut
International de Chimie Solvay, Brussells, Belgium, p. 199.
A. N. Belozersky and I. S. Kulaev (1957). The significance of polyphosphates in the development of
Aspergillus niger (in Russian). Biokhimiya, 22, 29–39.
A. N. Belozersky and I. S. Kulaev (1964). The correlation of the composition of free nucleotides
and nucleotide-containing coenzymes with the course of biochemical processes and environmental
conditions in fungi (in Russian). In Problemy Evolyutsionnoi i Technicheskoi Biokhimii (Problems
of Evolutionary and Technical Biochemistry), Izdatelstvo Nauka, Moscow, pp. 190–196.
A. N. Belozersky and I. S. Kulaev (1970). The polyphosphate–ribonucleic acid complexes from yeasts
(in Russian). In Biokhimiya i Fiziologiya Bol’nogo i Z.dorovogo Rasteniya (The Biochemistry and
Physiology of Diseased and Healthy Plants), Izdatelstvo, MGU, Moscow, p. 42.
A. N. Belozersky, V. B. Korchagin and T. I. Smirnova (1950). Changes in the chemical composition
of diphtheria bacteria with the age of the culture (in Russian). Dokl. Akad. Nauk SSSR, 71, 89–91.
M. Bental, U. Pick, M. Avron and H. Degani (1990). Metabolic studies with NMR spectroscopy of
the alga Dunaliella salina trapped within agarose beads. Eur. J. Biochem., 188, 111–116.
J. A. Bergeron and M. Singer (1958). Metachromasy: an experimental and theoretical reevaluation.
J. Biophys. Biochem. Cytol., 4, 433–439.
A. D. Bewsler, D. A. Polya, P. R. Lythgoe, I. M. Bruckshaw and D. A. C. Manning (2001). Anal-
ysis of fountain solutions for anionic components, including alkylbenzensulfonates, carboxylates
and polyphosphates, by a combination of ion-exchange and ion-exclusion chromatography and
inductively coupled plasma atomic emission spectrometry. J. Chromatogr., 920, 247–253.
L. L. Blackall, S. Rossetti, C. Christensson, M. Cunningham, P. Hartman, P. Hugenholtz and V. Tandoi
(1997). The characterization and description of representatives of ‘G’ bacteria from activated sludge
plants. Lett. Appl. Microbiol., 25, 63–69.
L. L. Blackall, G. R. Crocetti, A. M. Saunders and P. L. Bond (2002). A review and update of the
microbiology of enhanced biological phosphorus removal in wastewater treatment plants. Antonie
Van Leeuwenhoek, 81, 681–691.
J. J. Blum (1989). Changes in orthophosphate, pyrophosphate and long-chain polyphosphate lev-
els in Leishmania major promastigotes incubated with and without glucose. J. Protozool., 36,
254–257.
E. Blum, B. Py, A. J. Carpousis and C. F. Higgins (1997). Polyphosphate kinase is a component of
the Escherichia coli RNA degradosome. Mol. Microbiol., 26, 387–398.
M. A. Bobyk, A. V. Afinogenova, M. V. Dubinskaya, V. A. Lambina and I. S. Kulaev (1980). Detec-
tion of polyphosphates and enzymes of polyphosphate metabolism in Bdellovibrio bacteriovorus.
Zentralbl. Bacteriol. Microbiol. Hyg., 135, 461–466.
G. Bode, F. Mauch, H. Ditschuneit and P. Malfertheiner (1993). Identification of structures containing
polyphosphate in Helicobacter pylori. J. Gen. Microbiol., 139, 3029–3033.
D. G. Bolesch and J. D. Keasling (2000a). Polyphosphate binding and chain length recognition of
Escherichia coli exopolyphosphatase. J. Biol. Chem., 275, 33814–33819.
D. G. Bolesch and J. D. Keasling (2000b). Polyphosphate kinase from activated sludge performing
enhanced biological phosphorus removal. Appl Environ Microbiol., 68, 4971–4978.
P. L. Bond and G. N. Rees (1999). Microbiological aspects of phosphorus removal in activated sludge
system. In R. J. Seviour and L. L. Blackall (Eds), The Microbiology of Activated Sludge, Kluwer
Academic Publishing, Boston, MA, USA, pp. 227–256.