Page 240 - The Biochemistry of Inorganic Polyphosphates
P. 240
WU095/Kulaev
WU095-Ref
References
224 March 9, 2004 15:57 Char Count= 0
S. W. Fox and K. Harada (1960). Thermal copolymerization of amino acids common to proteins.
J. Am. Chem. Soc., 82, 3745–3750.
J. Friedberg and G. Avigad (1968). Structures containing polyphosphate in Micrococcus lysodeikticus.
J. Bacteriol., 96, 544–553.
G. Fuhs (1958). Bau, Verhalten und Bedeutung der Kern¨aquivalent in Structuren bei Oscillatoria
amoena (K¨uts.). Arch. Microbiol., 28, 270–276.
G. W. Fuhs and M. Chen (1975). Microbiological basis of phosphorus removal in the activated
sludge process for the treatment of wastewaters. Microb. Ecol., 2, 119–138.
N. W. Gabel (1965). Excitability and the origin of life: a hypothesis. Life Sci, 4, 2085–2097.
N. W. Gabel (1971). Excitability, polyphosphates and precellular organization. In R. Buvet and
C. Ponnamperuma (Eds), Molecular Evolution, Vol. 1, Chemical Evolution and the Origin oj Life,
North-Holland, Amsterdam, The Netherlands, p. 369.
N. W. Gabel and C. Ponnamperuma (1972). Primordial organic chemistry. In C. Ponnamperuma
(Ed.), Exobiology, North-Holland, Amsterdam, The Netherlands, p. 95.
N. W. Gabel and V. Thomas (1971). Evidence for the occurence and distribution of inorganic
polyphosphates in vertebrate tissues. J. Neurochem., 18, 1229–1242.
D. G. Gadian (1982). Nuclear Magnetic Resonance and its Applications to Living Systems, Oxford
University Press, New York.
J.-A. Gavigan, L. M. Marshell and A. D. W. Dobson (1999). Regulation of polyphosphate kinase
gene expression in Acinetobacter baumanii 52. Microbiology, 145, 2931–2937.
W. Geissd¨orfer, G. Ratajczak and W. Hillen (1998). Transcription of ppk from Acinetobacter sp.
strain ADP1, encoding a putative polyphosphate kinase, is induced by phosphate starvation. Appl.
Environ. Microbiol., 64, 896–901.
D. R. Gentry and M. Cashel (1996). Mutational analysis of the Escherichia coli spoT gene identifies
distinct but overlapping regions involved in ppGpp synthesis and degradation. Mol. Microbiol.,
19, 1373–1384.
K. Gezelius, S. Felters and A. Stahl (1973). Etude des polyphosphates pendant le development
multicellularire de Dictyostelium discoideum. C. R. Acad. Sci. Paris, 276D, 117–121.
W. Gilbert, (1986). The RNA world. Nature (London), 319, 618.
R. J. Gillies, K. Ugurbil, J. A. den Hollander and R. G. Shulman (1981). 31 P NMR studies of
intracellular pH and phosphate metabolism during cell division cycle of Saccharomyces cerevisiae.
Proc. Natl. Acad. Sci. USA, 78, 2125–2129.
E. Girbal, R. A. Binot and P. F. Monsan (1989). Production, purification and kinetic studies of
free and immobilized polyphosphate:glucose-6-phosphotransferase from Mycobacterium phlei.
Enzym. Micr. Technol., 11, 519–527.
A. M. Glauert and E. M. Brieger (1955). The electron-dense bodies of Mycobactcrium phlei. J. Gen.
Microbiol., 13, 310–317.
T. Glonek, M. Lunde, M. Mudget and T. C. Myers (1971). Studies of biological polyphosphate through
the use of phosphorus-31 nuclear magnetic resonance. Arch. Biochem. Biophys., 142, 508–513.
G. A. Godd and S. G. Bell (1985). Eutrophication in freshwaters. J. Water Pollution Control. Fed.,
84, 225–232.
J. Goldberg, H. Gonzalez, T. E. Jensen and W. A. Corpe (2001). Quantitative analysis of the elemental
composition and the mass of bacterial polyphosphate bodies using STEM EDX. Microbios, 106,
177–188.
M. R. Gomez-Garcia, M. Losada and A. Serrano (2003). Concurent transcriptional activation of ppa
and ppx genes by phosphate deprivation in the cyanobacterium Synechocystis sp. strain PCC6803.
Biochem. Biophys. Res. Commun., 302, 601–609.