Page 245 - The Biochemistry of Inorganic Polyphosphates
P. 245
15:57
Char Count= 0
WU095/Kulaev
March 9, 2004
WU095-Ref
References 229
B. Ingelman (1948). Isolation of polymetaphosphate of high molecular weight from Aspergillus
niger. Sven. Kem. Tidskr., 60, 222–230.
B. Ingelman and H. Malmgren (1947). Enzymatic breakdown of polymetaphosphate. I. Acta Chem.
Scand., 1, 422–432.
B. Ingelman and H. Malmgren (1948). Enzymatic breakdown of polymetaphosphate. II. Acta Chem.
Scand., 2, 365–380.
B. Ingelman and H. Malmgren (1949). Enzymatic breakdown of polymetaphosphate. III. Acta Chem.
Scand., 3, 157–162.
B. Ingelman and H. Malmgren (1950). Investigation of metaphosphates of high molecular weight
isolated from Aspergillius niger. Acta Chem. Scand. 4, 478–489.
D. Inh¨ulsen and R. Niemeyer (1975). Kondensierte Phosphate in Lemna minor L. und ihre Beziehugen
zu den Nucleins¨auren. Planta, 124, 159–167.
K. Ishige and T. Noguchi (2000). Inorganic polyphosphate kinase and adenylate kinase participate
in the polyphosphate:AMP phosphotransferase activity of Escherichia coli. Proc. Natl. Acad. Sci.
USA, 976, 14168–14171.
K. Ishige and T. Noguchi (2001). Polyphosphate:AMP phosphotransferase and polyphosphate:ADP
phosphotranferase activities of Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun., 281,
821–826.
K. Ishige, A. Kameds, T. Noguchi and T. Shiba (1998). The polyphosphate kinase gene of
Pseudomonas aeruginosa. DNA Res., 5, 157–162.
K. Ishige, T. Hamamoto, T. Shiba and T. Noguchi (2001). Novel method for enzymatic synthesis of
CMP-NeuAc. Biosci. Biotechnol. Biochem., 65, 1736–1740.
K. Ishige, H. Zhang and A. Kornberg (2002). Polyphosphate kinase (PPK2), a potent, polyphosphate-
driven generator of GTP. Proc. Natl. Acad. Sci. USA, 99, 16684–16688.
A. Ishihama (2000). Functional modulation of Eschrichia coli RNA polymerase. Annu. Rev.
Microbiol., 54, 499–519.
A. J. Ivanov, V. M. Vagabov, V. M. Fomchenkov and I. S. Kulaev (1996). Study of the influence of
polyphosphates of cell envelope on the sensitivity of yeast Saccharomyces carlsbergensis to the
cytyl-3-methylammonium bromide. Microbiologiia, 65, 611–616.
T. Iwamura and S. Kuwashima (1964). Formation of adenosine-5 -triphosphate from polyphosphate
by a cell-free extract from Chlorella. J. Gen. Appl. Microbiol., 10, 83–94.
L. Jacobson, M. Helman and J. Yariv (1982). The molecular composition of the volutin granules of
yeast. Biochem. J., 201, 437–479.
A. W. James and L. E. Casida (1964). Accumulation of phosphorus compounds by Mucor racemosus.
J. Bacteriol., 37, 150–164.
K. Janakidevi, V. C. Dewey and C. W. Kidder (1965). The nature of the inorganic polyphosphates in
a flagellated protozoa. J. Biol. Chem., 240, 1754–1766.
D. W. Jeffrey (1964). The formation of polyphosphate in Banksia ornata, an Australian heath plant.
Aust. J. Biol. Sci., 17, 845–854.
C. M. Jen and L. A. Shelef (1986). Factors affecting sensitivity of Staphylococcus aureus 196E to
polyphosphates. Appl. Environ. Microbiol., 52, 842–846.
T. E. Jensen (1968). Electron microscopy of polyphosphate bodies in a blue–green alga Nostoc
puriforme. Arch. Microbiol., 62, 144–152.
T. E. Jensen (1969). Fine structure of developing polyphosphate bodies in a blue–green alga,
Plectonema boryanum. Arch. Microbiol., 67, 328–338.
T. E. Jensen and L. M. Sicko (1974). Phosphate metabolism in blue–green algae.1. Fine structure