Page 248 - The Biochemistry of Inorganic Polyphosphates
P. 248
WU095/Kulaev
WU095-Ref
References
232 March 9, 2004 15:57 Char Count= 0
nicotinamide–adenine dinucleotide in chromatophores of Rhodospirillum rubrum. Biochemistry,
6, 3847–3857.
S. Keyhani, J. L. Lopez, D. S. Clark and J. D. Keasling (1996). Intracellular polyphosphate content
and cadmium tolerance in Anacystis nidulans R2. Microbios, 88, 105–114.
M. N. Khomlyak and D. M. Grodzinskii (1970). The heterogeneity of reserves of phosphorus metabo-
lites in tomato leaves (in Russian). In Fiziologiya i Biokhimiya Kulturnykh Rastenii (The Physiology
and Biochemisiry of Cultivated Plants), Vol. 2, Naukova Dumka, Kiev, Ukraine, pp. 381–384.
M. N. Khomlyak and D. M. Grodzinskii (1972). The possible regulatory function of the heterogeneous
nature of cellular reserves of phophorus compounds (in Russian). In Tezisy Dokl. na Vsesoyuznoi
Konferentsii ‘Regulyatsija Biokhimicheskikh Protsessov u Mikroorganizmov’, Abstracts of the
All-Union Conference on ‘The Regulation of Biochemical Processes in Microorganisms’,
Pushchino-na-Oke, Russian Federation, p. 171.
M. H. Kim, O. J. Hao and N. S. Wang (1997). Acinetobacter isolates from different activated sludge
processes: characteristics and neural network identification. FEMS Microbiol. Ecol., 23, 217–227.
H. Y. Kim, D. Schlictman, S. Shankar, Z. D. Xie, A. M. Chakrabarty and A. Kornberg (1998).
Alginate, inorganic polyphosphate, GTP and ppGpp synthesis co-regulated in Pseudomonas
aeruginosa: implications for stationary phase survival and synthesis of RNA/DNA precursors.
Mol. Microbiol., 27, 717–725.
K. S. Kim, N. N. Rao, C. D. Fraley and A. Kornberg (2002). Inorganic polyphosphate is essential
for long-term survival and virulence factors in Shigella and Salmonella spp. Proc. Natl. Acad. Sci.
USA, 99, 7675–7680.
L. L. Kisselev, J. Justesen, A. D. Wolfson and L. Y Frolova (1998). Diadenosine oligophosphates
(ApNA), a novel class of signalling molecules. FEBS Lett., 2427, 157–163.
T. Kitasato (1928). ¨ Uber Metaphosphatase. Biochem. Z., 197, 251–258.
31
B. Kjeldstad and A. Johnson (1987). A P NMR study of Propionibacterium acnes, including effects
caused by near-ultraviolet irradiation. Biochem. Biophys. Acta, 927, 184–189.
B. Kjeldstad, A. Johnson, K. M. Furuheim, A. Schie Bergan and J. Krane (1988). Hyperther-
mia induced polyphosphate changes in Propionibacterium acnes as studied by 31 P-NMR. Z.
Naturforsch., 44c, 45–48.
R. M. Klein (1952). Nitrogen and phosphorus fractions, respiration and structure of normal and
grown gall tissues of tomato. Plant Physiol., 27, 355–364.
L. Klungs¨oyr, J. King and V. Cheldelin (1957). Oxidative phosphorylations in Acetobacter
suboxydans. J. Biol. Chem., 227, 135–149.
E. Knappe, G. Drews and V. Bockel (1959). Untersuchungen zum Phosphorstoffwechsel der
Mycobakterien. Zentralbl. Bakteriol. Parasitenkd. Infektionstr. Hyg. Aht. 2, 112, 1–12.
A. N. Kokurina, I. S. Kulaev and A. N. Belozersky (1961). Phosphorus compounds in some strains
of Actinomycetes (in Russian). Microbiologiia, 30, 15–20.
H. K¨olbel (1958). Untersuchungen am Mycobacterium tuberculosis. V. Uber die Vermehrung der
Phosphatgranula. Zentralbl. Bakteriol. Parasitenkd. Infektionstr. Hyg. Abt. 1, 171, 486–495.
Y. Komine, L. L. Eggink, H. Park and J. K. Hoober (2000). Vacuolar granules in Chlamydomonas
reinhardtii: polyphosphate and a 70-kDa polypeptide as major components. Planta, 210, 897–905.
A. S. Konovalov (1960). The conversion of phosphorus compounds in yeasts at various stages of
alcoholic fermentation (in Russian). Microbiologiia, 29, 661–675.
L. V. Konovalova and L. I. Vorob’eva (1972). The effect of polymyxin M on the accumulation of
lipids and polyphosphates by cells of Propionibacterium shermanii (in Russian). Dokl. Vyssh.
Shkoly. Ser. Biol., 7, 101–115.