Page 247 - The Biochemistry of Inorganic Polyphosphates
P. 247
15:57
Char Count= 0
WU095/Kulaev
March 9, 2004
WU095-Ref
References 231
K. Kasai, S. Usami, T. Yamada, Y. Endo, K. Ochi and Y. Tozawa (2002). A RelA-SpoT homolog
(Cr-RSH) identified in Chlamydomonas reinhardtii generates stringent factor in vivo and localizes
to chloroplasts in vitro. Nucleic Acids Res., 30, 4985–4992.
B. J. Katchman and J. R. Van Wazer (1954). The ‘soluble’ and ‘insoluble’ polyphosphates in yeast.
Biochim. Biophys. Acta, 14, 445–456.
J. Kato, K. Yamada, A. Muramatsu, Hardoyo and H. Ohtake (1993a). Genetic improvement of
Escherichia coli for enhanced biological removal of phosphate from waste water. Appl. Environ.
Microbiol., 59, 3744–3749.
J. Kato, T. Yamamoto, K. Yamada and H. Othake (1993b). Cloning, sequence and characterization
of the polyphosphate kinase-encoding gene (ppk)of Klebsiella aerogenes. Gene, 137, 237–242.
M. Kawaharasaki, H. Tanaka, T. Kanagawa and K. Nakamura (1999). In situ identification of
polyphosphate-accumulating bacteria in activated sludge by dual staining with rRNA-targeted
oligonucleotide probes and 4 ,6-diamidino-2-phenylindol (DAPI) at a polyphosphate-probing
concentration. Water Res., 33, 257–26.
S. Kawai, S. Mori, T. Mukai, S. Suzuki, T. Yamada, W. Hashimoto and K. Murata (2000). Inorganic
Polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv.
Biochem. Biophys. Res. Commun., 276, 57–63.
S. Kawai, S. Mori, T. Mukai, W. Hashimoto and K. Murata (2001). Molecular characterization of
Escherichia coli NAD kinase. Eur. J. Biochem., 268, 4359–4365.
J. D. Keasling (1997). Regulation of intracellular toxic metals and other cations by hydrolysis of
polyphosphate. Annu. New York Acad. Sci., 829, 243–249.
J. D. Keasling and G. A. Hupf (1996). Genetic manipulation of polyphosphate metabolism affects
cadmium tolerance in Escherihia coli. Appl. Enviroment. Microbiol., 62, 743–746.
J. D. Keasling, L. Bertsh and A. Kornberg (1993). Guanosine pentaphosphate phosphohydrolase
of Escherichia coli is a long-chain exopolyphosphatase. Proc. Natl. Acad. Sci. USA, 90, 7029–
7033.
J. D. Keasling, S. J. Van Dien and J. Pramanik (1998). Engineering polyphosphate metabolism in
Escherichia coli – implication for bioremediation of inorganic contaminants. Biotechnol. Bioeng.,
58, 231–239.
K. D. Keasling, S. J. Van Dien, P. Trelstad, N. Renninger and K. McMahon (2000). Application
of polyphosphate metabolism to environmental and biotechnological problems. Biochemistry
(Moscow), 65, 324–33.
K. Keck and H. Stich (1957). The widespread occurrence of polyphosphate in lower plants. Ann.
Bot., 21, 611–619.
A. D. Keefe and S. L. Miller (1995). Are polyphosphates or phosphate esters prebiotic reagents? J.
Mol. Evol., 41, 693–702.
A. D. Keefe and S. L. Miller (1996). Potentially prebiotic synthesis of condensed phosphates. Origin
Life Evol. Biosph., 26, 15–25.
D. L. Keister and N. J. Minton (1971). ATP synthesis derived by inorganic pyrophospahte in
Rhodospirillum rubrum chromatophores. Biochem. Biophys. Res. Commun., 42, 932–939.
D. L. Keister and N. J. Minton (1972). Energy-linked reactions in photosynthetic bacteria. Arch.
Biochem. Biophys., 147, 330–338.
D. L. Keister and N. J. Yike (1967a). Studies on an energy-linked pyridine nucleotide transdehydro-
genase in photosynthetic bacteria. Biochem. Biophys. Res. Commun., 24, 510–519.
D. L. Keister and N. J. Yike (1967b). Energy-linked reactions in photosynthetic bacteria. II. The
energy-dependent reduction of oxidized nicotinamide–adenine dinucleotide phosphate by reduced