Page 243 - The Biochemistry of Inorganic Polyphosphates
P. 243

15:57
                                                     Char Count= 0
                        WU095/Kulaev
                                    March 9, 2004
               WU095-Ref
                                                                             References      227
                        F. M. Harold and R. L. Harold (1965). Degradation of inorganic polyphosphates in mutants of
                          Aerobacter aerogenes. J. Bacteriol., 89, 1262–1270.
                        F. M. Harold and A. Miller (1961). Intracellular localization of inorganic polyphosphate in
                          Neurospora crassa. Biochim. Biophys. Acta, 50, 261–270.
                        F. M. Harold and S. Sylvan (1963). Accumulation of inorganic polyphosphate in Aerobacter aero-
                          genes. II Envinronmental control and the role of sulphur compounds. J. Bacteriol., 86, 222–231.
                        B. Z. Harris, D. Kaiser and M. Singer (1998). The guanosine nucleotide (p)ppGpp initiates
                          development and A-factor production in Myxococcus xanthus. Genes Dev., 12, 1022–1035.
                        H. Hase, S. Miyachi and S. Mihara (1963). A preliminary note on the phosphorus compounds in
                          chloroplasts and volutin granules isolated from Chlorelta cells. In H. Tamiya (Ed.), Microalgae
                          and Photosyntetic Bacteria, University of Tokyo Press, Tokyo, Japan, p. 619.
                        J. Heller (1953). O zwiarkach fosforowyeh wysckiej energii. Postepy Biiochim., 1, 5–11.
                        J. Heller (1954). Podstawowe reakcje w oddychanin rollin i swierat. Postepy Biochem., 2, 44–52.
                        J. Heller, St. Karpiak and J. Subikowa (1950). Inorganic pyrophosphate in insect tissue. Nature
                          (London), 166, 187–188.
                        C. M. Hensgens, H. Santos, C. Zhang, W. H. Kruizinga and T. A. Hansen (1996). Electron-dense
                          granules in Desulfovibrio gigas do not consist of inorganic triphosphate but of a glucose
                          pentakis(diphosphate). Eur. J. Biochem., 242, 327–331.
                        E. C. Hermann and R. R. Schmidt (1965). Synthesis of phosphorus-containing macromoleculaes
                          during synchronous growth of Chlorella pyrenoidosa. Biochem. Biophys. Acta, 95, 63–75.
                        M. Herve, J. Wietzerbin, O. Lebourguais and S. Tran-Dinh (1992). Effects of 2-deoxy-D-glucose on
                          the glucose metabolism in Saccharomyces cerevisiae studied by multinuclear-NMR spectroscopy
                          and biochemical methods. Biochimie, 74, 1103–1115.
                        S. J. A. Hesse, G. J. G. Ruijter, C. Dijkema and J. Visser (2002). Intracellular pH homeostasis in the
                          filamentous fungus Aspegillus niger. Eur. J. Biochem., 269, 3485–3494.
                        R. P. X. Hesselmann, C. Werlen, D. Hahn, J. R. van der Meer and A. J. B. Zehnder (1999).
                          Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological
                          phosphate removal in activated sludge. System. Appl. Microbiol., 22, 454–465.
                        A. Hiraishi, Y. Ueda and J. Ishihara (1998). Quinone profiling of bacterial communities in natural
                          and synthetic sewage-activated sludge for enhanced phosphate removal. Appl. Environ. Microbiol.,
                          64, 992–998.
                        H. Hofeler, D. Jensen, M. M. Pike, J. L. Delayre, V. P. Cirillo, C. S. Springer, Jr, E. T. Fossel
                          and J. A. Balschi (1987). Sodium transport and phosphorus metabolism in sodium-loaded
                          yeast: simultaneous observation with sodium-23 and phosphorus-31 NMR spectroscopy in vivo.
                          Biochemistry, 26, 4953–4962.
                        R. C. Hoffman, Jr, P. L. Wyman, L. E. Smith, C. L. Nolt, J. L. Conley, J. M. Hevel, J. P. Warren, G.
                          A. Reiner and O. A. Moe, Jr (1988). Immobilized polyphosphate kinase: preparation, properties,

                          and potential for use in adenosine 5 -triphosphate regeneration. Biotechnol. Appl. Biochem., 10,
                          107–117.
                        O. Hoffman-Ostenhof and W. Weigert (1952). ¨ Uber die M¨ogliche Function des polymeren Meta-
                          haphosphates als Speicher energie-reichen Phosphate in der Hefe. Naturwissenscheften, 39,
                          303–304.
                        O. Hoffman-Ostenhof, A. Klima, J. Kenedy and K. Keck (1955). Zur Kenntniss des Phosphatstof-
                          fwechsels der Hefe. Mh. Chem., 86, 604–616.
                        P. K. Holahan, S. A. Knizner, C. M. Gabriel and C. E. Swenberg (1988). Alterations in phosphate
                          metabolism during cellular recovery of radiation damage in yeast. Int. J. Radiat., 54, 545–562.
                        J. Hollender, U. Dreyer, L. Kornberg, P. Kampfer and W. Dott (2002). Selective enrichment and
   238   239   240   241   242   243   244   245   246   247   248