Page 243 - The Biochemistry of Inorganic Polyphosphates
P. 243
15:57
Char Count= 0
WU095/Kulaev
March 9, 2004
WU095-Ref
References 227
F. M. Harold and R. L. Harold (1965). Degradation of inorganic polyphosphates in mutants of
Aerobacter aerogenes. J. Bacteriol., 89, 1262–1270.
F. M. Harold and A. Miller (1961). Intracellular localization of inorganic polyphosphate in
Neurospora crassa. Biochim. Biophys. Acta, 50, 261–270.
F. M. Harold and S. Sylvan (1963). Accumulation of inorganic polyphosphate in Aerobacter aero-
genes. II Envinronmental control and the role of sulphur compounds. J. Bacteriol., 86, 222–231.
B. Z. Harris, D. Kaiser and M. Singer (1998). The guanosine nucleotide (p)ppGpp initiates
development and A-factor production in Myxococcus xanthus. Genes Dev., 12, 1022–1035.
H. Hase, S. Miyachi and S. Mihara (1963). A preliminary note on the phosphorus compounds in
chloroplasts and volutin granules isolated from Chlorelta cells. In H. Tamiya (Ed.), Microalgae
and Photosyntetic Bacteria, University of Tokyo Press, Tokyo, Japan, p. 619.
J. Heller (1953). O zwiarkach fosforowyeh wysckiej energii. Postepy Biiochim., 1, 5–11.
J. Heller (1954). Podstawowe reakcje w oddychanin rollin i swierat. Postepy Biochem., 2, 44–52.
J. Heller, St. Karpiak and J. Subikowa (1950). Inorganic pyrophosphate in insect tissue. Nature
(London), 166, 187–188.
C. M. Hensgens, H. Santos, C. Zhang, W. H. Kruizinga and T. A. Hansen (1996). Electron-dense
granules in Desulfovibrio gigas do not consist of inorganic triphosphate but of a glucose
pentakis(diphosphate). Eur. J. Biochem., 242, 327–331.
E. C. Hermann and R. R. Schmidt (1965). Synthesis of phosphorus-containing macromoleculaes
during synchronous growth of Chlorella pyrenoidosa. Biochem. Biophys. Acta, 95, 63–75.
M. Herve, J. Wietzerbin, O. Lebourguais and S. Tran-Dinh (1992). Effects of 2-deoxy-D-glucose on
the glucose metabolism in Saccharomyces cerevisiae studied by multinuclear-NMR spectroscopy
and biochemical methods. Biochimie, 74, 1103–1115.
S. J. A. Hesse, G. J. G. Ruijter, C. Dijkema and J. Visser (2002). Intracellular pH homeostasis in the
filamentous fungus Aspegillus niger. Eur. J. Biochem., 269, 3485–3494.
R. P. X. Hesselmann, C. Werlen, D. Hahn, J. R. van der Meer and A. J. B. Zehnder (1999).
Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological
phosphate removal in activated sludge. System. Appl. Microbiol., 22, 454–465.
A. Hiraishi, Y. Ueda and J. Ishihara (1998). Quinone profiling of bacterial communities in natural
and synthetic sewage-activated sludge for enhanced phosphate removal. Appl. Environ. Microbiol.,
64, 992–998.
H. Hofeler, D. Jensen, M. M. Pike, J. L. Delayre, V. P. Cirillo, C. S. Springer, Jr, E. T. Fossel
and J. A. Balschi (1987). Sodium transport and phosphorus metabolism in sodium-loaded
yeast: simultaneous observation with sodium-23 and phosphorus-31 NMR spectroscopy in vivo.
Biochemistry, 26, 4953–4962.
R. C. Hoffman, Jr, P. L. Wyman, L. E. Smith, C. L. Nolt, J. L. Conley, J. M. Hevel, J. P. Warren, G.
A. Reiner and O. A. Moe, Jr (1988). Immobilized polyphosphate kinase: preparation, properties,
and potential for use in adenosine 5 -triphosphate regeneration. Biotechnol. Appl. Biochem., 10,
107–117.
O. Hoffman-Ostenhof and W. Weigert (1952). ¨ Uber die M¨ogliche Function des polymeren Meta-
haphosphates als Speicher energie-reichen Phosphate in der Hefe. Naturwissenscheften, 39,
303–304.
O. Hoffman-Ostenhof, A. Klima, J. Kenedy and K. Keck (1955). Zur Kenntniss des Phosphatstof-
fwechsels der Hefe. Mh. Chem., 86, 604–616.
P. K. Holahan, S. A. Knizner, C. M. Gabriel and C. E. Swenberg (1988). Alterations in phosphate
metabolism during cellular recovery of radiation damage in yeast. Int. J. Radiat., 54, 545–562.
J. Hollender, U. Dreyer, L. Kornberg, P. Kampfer and W. Dott (2002). Selective enrichment and