Page 244 - The Biochemistry of Inorganic Polyphosphates
P. 244

WU095/Kulaev
               WU095-Ref
                                     References
                            228     March 9, 2004  15:57  Char Count= 0
                              characterization of a phosphorus-removing bacterial consortium from activated sludge. Appl.
                              Microbiol. Biotechnol., 58, 106–111.
                            H. Holzer (1951). Photosynthcse und Atmungakettenphosphorylierung. Naturwissenschaften, 66,
                              424–430.
                            P. J. Horn, N. F. B. Phillips and H. G. Wood (1991). Photoinactivation of a polyphosphate/ATP
                              dependent glucokinase by 8-azido-adenosine-5 -triphosphate. FASEB J., 5, A420.

                            Z. Hostalek, J. Tobek, M. A. Bobyk and I. S. Kulaev (1976). Role of ATP-glucokinase and
                              polyphosphate glucokinase in Streptomyces aureofaciens. Folia Microbiol., 21, 131–135.
                            M. B. Houlahan and H. K. Mitchell (1948). The accumulation of acid labile, inorganic phosphate in
                              mutants of Neurospora. Arch. Biochem., 19, 257–261.
                            S. Hoyt and G. H. Jones (1999). RelA is required for actinomycin production in Streptomyces
                              antibioticus. J. Bacteriol., 181, 3824–3829.
                            P. C. Hsieh (1996). Molecular cloning and characterization of polyphosphate–glucokinase from
                              Mycobacterium tuberculosis. PhD Thesis, Case Western Reserve University, Cleveland, OH, USA.
                            P. C. Hsieh, B. C. Shenoy, J. E. Jentoft and N. F. B. Phillips (1993a). Purification of polyphosphate and
                              ATP glucose phosphotransferase from Mycobacterium tuberculosis H37Ra: evidence that poly(P)
                              and ATP glucokinase activities are catalyzed by the same enzyme. Protein Expr. Purif., 4, 76–84.
                            P. C. Hsieh, B. C. Shenoy, F. C. Haase, J. E. Jentoft and N. F. B. Phillips (1993b). Involvement
                              of tryptophan(s) at the active site of polyphosphate/ATP glucokinase from Mycobacterium
                              tuberculosis. Biochemistry, 32, 6243–6249.
                            P. C. Hsieh, B. C. Shenoy, D. Samols and N. F. B. Phillips (1996a). Cloning, expression and
                              characterization of polyphosphate glucokinase from Mycobacterium tuberculosis. J. Biol. Chem.,
                              271, 4909–4915.
                            P. C. Hsieh, T. H. Kowalczyk and N. F. B. Phillips (1996b). Kinetic mechanisms of polyphosphate
                              glucokinase from Mycobacterium tuberculosis. Biochemistry, 35, 9772–9781.
                            R. P. Huang, and R. N. Reusch (1995). Genetic competence in Escherichia coli requires poly-
                              beta-hydroxybutirate calcium polyphosphate membrane complex and certain divalent cations. J.
                              Bacteriol., 177, 486–490.
                            D. E. Hughes and A. Muhammed (1962). The metabolism of polyphosphate in bacteria. In
                              Proceedings of Acides Ribonucleiques et Polyphosphates. Structure, Synthese et Fonctions, CNRS
                              International colloquion, Strasbourg, France, 1961, CNRS, Paris, pp. 591–602.
                            D. E. Hughes, S. E. Conti and R. C. Fuller (1963). Inorganic polyphosphate metabolism in
                              Chlorobium thiosulfatofilium. J. Bacteriol., 85, 577–586.
                            R. P. Igamnazarov and M. N. Valikhanov (1980). Hydrolysis of condensed phosphates by extracellular
                              phopsphohydrolase of cotton plant root system. Physiol. Rastenii (Moscow), 227, 1947–1951.
                            A. Immirzi and W. Porzio (1982). A new form of Kuroll’s sodium salt studied by the Rietveld method
                              from X-ray diffraction data. Acta Crystallogr., B38, 2788–2792.
                            G. Imsiecke, J. M¨unkner, B. Lorenz, N. Bachinski, W. G. E. M¨uller and H. C. Schr¨oder (1996).
                              Inorganic polyphosphate in the developing of the freshwater sponge Ephydatia muelleri: effect of
                              stress by polluted waters. Envin. Toxicol. Chem., 15, 1329–1334.
                            K. J. Indge (1968a). Metabolic lysis of yeast protoplasts. J. Gen. Microbiol., 51, 433–440.
                            K. J. Indge (1968b). The isolation and properties of the yeast cell vacuole. J. Gen. Microbiol., 51,
                              441–447.
                            K. J. Indge (1968c). Polyphosphates of the yeast cell vacuole. J. Gen. Microbiol., 51, 447–455.
                            B. Ingelman (1947). Isolation of a phosphorus-rich substance of high molecular weight from
                              Aspergillus niger. Acta Chem. Scand., 1, 776–779.
   239   240   241   242   243   244   245   246   247   248   249