Page 244 - The Biochemistry of Inorganic Polyphosphates
P. 244
WU095/Kulaev
WU095-Ref
References
228 March 9, 2004 15:57 Char Count= 0
characterization of a phosphorus-removing bacterial consortium from activated sludge. Appl.
Microbiol. Biotechnol., 58, 106–111.
H. Holzer (1951). Photosynthcse und Atmungakettenphosphorylierung. Naturwissenschaften, 66,
424–430.
P. J. Horn, N. F. B. Phillips and H. G. Wood (1991). Photoinactivation of a polyphosphate/ATP
dependent glucokinase by 8-azido-adenosine-5 -triphosphate. FASEB J., 5, A420.
Z. Hostalek, J. Tobek, M. A. Bobyk and I. S. Kulaev (1976). Role of ATP-glucokinase and
polyphosphate glucokinase in Streptomyces aureofaciens. Folia Microbiol., 21, 131–135.
M. B. Houlahan and H. K. Mitchell (1948). The accumulation of acid labile, inorganic phosphate in
mutants of Neurospora. Arch. Biochem., 19, 257–261.
S. Hoyt and G. H. Jones (1999). RelA is required for actinomycin production in Streptomyces
antibioticus. J. Bacteriol., 181, 3824–3829.
P. C. Hsieh (1996). Molecular cloning and characterization of polyphosphate–glucokinase from
Mycobacterium tuberculosis. PhD Thesis, Case Western Reserve University, Cleveland, OH, USA.
P. C. Hsieh, B. C. Shenoy, J. E. Jentoft and N. F. B. Phillips (1993a). Purification of polyphosphate and
ATP glucose phosphotransferase from Mycobacterium tuberculosis H37Ra: evidence that poly(P)
and ATP glucokinase activities are catalyzed by the same enzyme. Protein Expr. Purif., 4, 76–84.
P. C. Hsieh, B. C. Shenoy, F. C. Haase, J. E. Jentoft and N. F. B. Phillips (1993b). Involvement
of tryptophan(s) at the active site of polyphosphate/ATP glucokinase from Mycobacterium
tuberculosis. Biochemistry, 32, 6243–6249.
P. C. Hsieh, B. C. Shenoy, D. Samols and N. F. B. Phillips (1996a). Cloning, expression and
characterization of polyphosphate glucokinase from Mycobacterium tuberculosis. J. Biol. Chem.,
271, 4909–4915.
P. C. Hsieh, T. H. Kowalczyk and N. F. B. Phillips (1996b). Kinetic mechanisms of polyphosphate
glucokinase from Mycobacterium tuberculosis. Biochemistry, 35, 9772–9781.
R. P. Huang, and R. N. Reusch (1995). Genetic competence in Escherichia coli requires poly-
beta-hydroxybutirate calcium polyphosphate membrane complex and certain divalent cations. J.
Bacteriol., 177, 486–490.
D. E. Hughes and A. Muhammed (1962). The metabolism of polyphosphate in bacteria. In
Proceedings of Acides Ribonucleiques et Polyphosphates. Structure, Synthese et Fonctions, CNRS
International colloquion, Strasbourg, France, 1961, CNRS, Paris, pp. 591–602.
D. E. Hughes, S. E. Conti and R. C. Fuller (1963). Inorganic polyphosphate metabolism in
Chlorobium thiosulfatofilium. J. Bacteriol., 85, 577–586.
R. P. Igamnazarov and M. N. Valikhanov (1980). Hydrolysis of condensed phosphates by extracellular
phopsphohydrolase of cotton plant root system. Physiol. Rastenii (Moscow), 227, 1947–1951.
A. Immirzi and W. Porzio (1982). A new form of Kuroll’s sodium salt studied by the Rietveld method
from X-ray diffraction data. Acta Crystallogr., B38, 2788–2792.
G. Imsiecke, J. M¨unkner, B. Lorenz, N. Bachinski, W. G. E. M¨uller and H. C. Schr¨oder (1996).
Inorganic polyphosphate in the developing of the freshwater sponge Ephydatia muelleri: effect of
stress by polluted waters. Envin. Toxicol. Chem., 15, 1329–1334.
K. J. Indge (1968a). Metabolic lysis of yeast protoplasts. J. Gen. Microbiol., 51, 433–440.
K. J. Indge (1968b). The isolation and properties of the yeast cell vacuole. J. Gen. Microbiol., 51,
441–447.
K. J. Indge (1968c). Polyphosphates of the yeast cell vacuole. J. Gen. Microbiol., 51, 447–455.
B. Ingelman (1947). Isolation of a phosphorus-rich substance of high molecular weight from
Aspergillus niger. Acta Chem. Scand., 1, 776–779.