Page 249 - The Biochemistry of Inorganic Polyphosphates
P. 249
15:57
Char Count= 0
WU095/Kulaev
March 9, 2004
WU095-Ref
References 233
V. B. Korchagin (1954). Yeast metaphosphates and the chemical nature of volutin (in Russian).
Candidate’s Thesis, Moscow State University, Moscow.
A. Kornberg (1950). Enzymatic synthesis of triphosphopyridine nucleotide. J. Biol. Chem., 182,
805–813.
S. R. Kornberg (1956). Tripolyphosphate and trimetaphosphate in yeast extracts. J. Biol. Chem.,
218, 23–31.
S. R. Kornberg (1957a). Adenosine triphosphate synthesis from polyphosphate by an enzyme from
Escherichia coli. Biochem. Biophys. Acta, 26, 294–300.
A. Kornberg (1957b). Pyrophosphorylases and phosphorylases in biosynthetic reactions. Adv.
Enzymol., 18, 191–240.
A. Kornberg (1995). Inorganic polyphosphate: toward making a forgotten polymer unforgottable.
J. Bacteriol., 177, 491–496.
A. Kornberg (1999). Inorganic polyphosphate: a molecule of many functions. In H. C. Schr¨oder and
W. E. G. M¨uller (Eds), Inorganic Polyphosphates. Biochemistry, Biology, Biotechnology, Progress
in Molecular and Subcellular Biology (Special Issue), Vol. 23, Springer-Verlag, Berlin, pp. 1–19.
S. Kornberg and A. Kornberg (1954). Inorganic tripolyphosphate and trimetaphosphate in yeast
extracts. Fed. Proc., 13, 244–249.
A. Kornberg, S. Kornberg and E. Simms (1956). Methaphosphate synthesis by an enzyme from
Escherichia coli. Biochim. Biophys. Acta, 20, 215–227.
A. Kornberg, N. N. Rao and D. Ault-Rich´e (1999). Inorganic polyphosphate: a molecule with many
functions. Ann. Rev. Biochem., 68, 89–125.
G. J. J. Kortstee and H. W. van Veen (1999). Polyphosphate-accumulating bacteria and enhanced
biological phosphorus removal. In H. C. Schr¨oder and W. E. G. M¨uller (Eds), Inorganic Polyphos-
phates. Biochemistry, Biology, Biotechnology, Progress in Molecular and Subcellular Biology
(Special Issue), Vol. 23, Springer-Verlag, Berlin, pp. 275–299.
G. J. J. Kortstee, K. J. Appeldoorn, C. F. C. Bonting, E. W. J. van Niel and H. W. van Veen (1994).
Biology of polyphosphate accumulating bacteria, involved in enhanced biological phosphorus
removal. FEMS Microbiol. Rev., 15, 137–153.
G. J. J. Kortstee, K. J. Appeldoorn, C. F. C. Bonting, E. W. J. van Niel and H. W. van Veen (2000).
Recent developments in the biochemistry and ecology of enhanced biological phosphorus removal.
Biochemistry (Moscow), 65, 332–341.
A. Kossel (1893). Uber die Nucleinsaure. Arch. Anat. Physiol., 23, 157–160.
N. V. Kostlan (1972). The properties of phosphorus compounds of the blue–green algae with respect
to the nutrient status (in Russian). In Tezisy Dokl. na Vsesoyuznoi Konferentsii ‘Regulyatsiya
Biokhimicheskikh Protsessov u Mikroorganizmov’, Proceedings of the All-Union Conference
on the ‘Regulation of Biochemical Processes in Microorganisms’, Pushchino-na-Oke, Russian
Federation, p. 74.
T. H. Kowalczyk and N. F. B. Phillips (1993). Determination of endopolyphosphatase using
polyphosphate glucokinase. Anal. Biochem., 212, 194–205.
T. H. Kowalczyk and O. Szymona (1991). Glucose determination using immobilized polyphosphate
glucokinase. Anal. Biochem., 197, 326–332.
T. H. Kowalczyk, P. J. Horn, W. H. Pan and N. F. B. Phillips (1996). Initial rate and equilibrium
isotope exchange studies on the ATP-dependent activity of polyphosphate glucokinase from
Propionibacterium shermanii. Biochemistry, 35, 6777–6785.
H. Kowalska, I. Pastuszak and M. Szymona (1979). Multiple forms of polyphosphate-glucose
phosphotransferase from Mycobacterium tuberculosis H37Ra. Folia Soc. Sci. Lublinensis, 21, 112.