Page 254 - The Biochemistry of Inorganic Polyphosphates
P. 254
WU095/Kulaev
WU095-Ref
References
238 March 9, 2004 15:57 Char Count= 0
in cells of the petroleum hydrocarbon-assimilating yeast Candida quillernmondii under different
growth conditions (in Russian). Prikl. Biokhim. Mikrobiol., 10, 396–407.
I. S. Kulaev, V. V. Rozhanets, A. Kobylanskii and Yu. V. Filippovich (1974c). Inorganic polyphos-
phates in insects (in Russian). Evol. Biochem. Fiziol., 10, 147–165.
I. S. Kulaev, P. M. Rubtsov, B. Brommer and A. I. Yazykov (1975). High-molecular polyphosphates
in the development of individual cells of Acetabularia crenulata (in Russian). Fiziol. Rast, 22,
537–543.
I. S. Kulaev, A. M. Bobyk, I. Tobek and I. Hostalek (1976). The possible role of high-molecular
polyphosphales in the biosynthesis of chlorlctracycline by Streptomyces aureofaciens. Biokhimiya
(Moscow), 41, 343–348.
I. S. Kulaev, V. M. Vagabov and Yu. A. Shabalin (1987). New data on biosynthesis of polyphosphates
in yeasts. In A. Torriani-Gorini, F. G. Rothman, S. Silver, A. Wright and E. Yagil (Eds), Phosphate
Metabolism and Cellular Regulation in Microorganisms, American Society of Microbiology,
Washington, DC, USA, pp. 233–238.
I. S. Kulaev, V. Vagabov and T. Kulakovskaya (1999). New aspects of polyphosphate metabolism
and function. J. Biosci. Bioeng., 88, 111–129.
T. V. Kulakovskaya, N. A. Andreeva and I. S. Kulaev (1997). Adenosine-5 -tetraphosphate and
guanosine-5 -tetraphosphate – new substrates of the cytosol exopolyphosphatase of Saccharomyces
cerevisiae. Biochemistry (Moscow), 62, 1180–1184.
T. V. Kulakovskaya, N. A. Andreeva, A. V. Karpov, I. A. Sidorov and I. S. Kulaev (1999). Hydrolysis
of tripolyphosphate by purified exopolyphosphatase of Saccharomyces cerevisiae cytosol: kinetic
model. Biochemistry (Moscow), 64, 990–993.
T. V. Kulakovskaya, N. A. Andreeva, L. V. Trilisenko, V. M. Vagabov and I. S. Kulaev (2004). Two
exopolyphosphatases in Saccharomyces cerevisiae cytosol at different culture conditions. Proc.
Biochem. in press.
Yu. V. Kulyash (1972). The relationship of respiration to certain features of phosphorus metabolism
in Staphylococcus aureus 209p at various temperatures (in Russian). In I. S. Kulaev (Ed.), The
Regulation of Biochemical Processes in Microorganisms), Nauka Publishers, Pushchino na Oke,
Russian Federation, p. 91.
K. D. Kumble and A. Kornberg (1995). Inorganic polyphosphate in mammalian cells and tissues.
J. Biol. Chem., 270, 5818–5822.
K. D. Kumble and A. Kornberg (1996). Endopolyphosphatases for long chain polyphosphate in yeast
and mammals. J. Biol. Chem., 271, 27146–27151.
K. D. Kumble, K. Ahn and A. Kornberg (1996). Phosphohistidylactive sites in polyphosphate kinase
of Escherichia coli. Proc. Natl. Acad. Sci. USA, 93, 14391–14395.
A. Kuroda and A. Kornberg (1997). Polyphosphate kinase as a nucleoside diphosphate kinase in
Escherichia coli and Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 94, 439–442.
A. Kuroda and H. Ohtake (2000). Molecular analysis of polyphosphate accumulation in bacteria.
Biochemistry (Moscow), 65, 304–309.
A. Kuroda, H. Murphy, M. Cashel and A. Kornberg (1997). Guanosine tetra- and pentaphosphate
promote accumulation of inorganic polyphosphate in Escherichia coli. J. Biol. Chem., 272,
21240–21243.
A. Kuroda, S. Tanaka, T. Ikeda, J. Kato, N. Takiguchi and H. Ohtake (1999). Inorganic polyphosphate
kinase is required to stimulate protein degradation and for adaptation to amino acid starvation in
Escherichia coli. Proc. Natl. Acad. Sci. USA, 96, 14264–14269.
A. Kuroda, K. Nomura, R. Ohtomo, J. Kato, T. Ikeda, N. Takiguchi, H. Ohtake and A. Kornberg