Page 256 - The Biochemistry of Inorganic Polyphosphates
P. 256
WU095/Kulaev
WU095-Ref
References
240 March 9, 2004 15:57 Char Count= 0
E. A. Libermann and V. P. Skulachev (1970). Conversation of biomembrane-produced energy into
electric form. IV General discussion. Biochim. Biophys. Acta, 216, 30–42.
L. Lichko and L. Okorokov (1991). Purification and some properties of membrane-bound and soluble
pyrophosphatases of yeast vacuoles. Yeast, 7, 805–812.
L. P. Lichko, L. A. Okorokov and I. S. Kulaev (1982). Participation of vacuoles in regulation of K ,
+
Mg 2+ and orthophosphate ions in cytoplasm of the yeast Saccharomyces carlsbergensis. Arch.
Microbiol., 132, 289–293.
L. P. Lichko, T. V. Kulakovskaya and I. S. Kulaev (1996). Characterization of the nuclear
polyphosphatase activity in Saccharomyces cerevisiae. Biochemistry (Moscow), 61, 361–366.
L. P. Lichko, T. V. Kulakovskaya and I. S. Kulaev (1998). Membrane-bound and soluble
polyphosphatases of mitochondria of Saccharomycres cerevisiae: identification and comparative
characterization. Biochim. Biophys. Acta, 1372, 153–162.
L. P. Lichko, T. V. Kulakovskaya and I. S. Kulaev (2000). Purification and characterization
of a soluble polyphosphatase from Mitochondria of Saccharomyces cerevisiae. Biochemistry
(Moscow), 65, 355–361.
L. P. Lichko, T. V. Kulakovskaya and I. S. Kulaev (2002a). Two exopolyphosphatases of Microlunatus
phosphovorus, a polyphosphate-accumulating eubacterium from activated sludge. Proc. Biochem.,
37, 799–803.
L. P. Lichko, T. Kulakovskaya and I. Kulaev (2002b). Effect of PPX1 inactivation on exopolyphos-
phatases of different cell compartments of the yeast Saccharomyces cerevisiae. Biochim. Biophys.
Acta, 1599, 102–105.
L. P. Lichko, N. A. Andreeva, T. V. Kulakovskaya and I. S. Kulaev (2003a). Exopolyphospahatases
of the yeast Saccharomyces cerevisiae (Minirewiev). FEMS Yeast Res., 3, 233–238.
L. P. Lichko, T. V. Kulakovskaya and I. S. Kulaev (2003b). Nuclear exopolyphosphatase of Saccha-
romyces cerevisiae is not encoded by PPX1 gene encoding the major yeast exopolyphosphatase.
FEMS Yeast Res., 3, 113–117.
L. Lieberman (1888). Uber das Nuclein der Hefe und Kunstliche Darstellung eines Nucleus Eiweiss
und Metaphosphatsaure. Ber. Chem-Ges., 21, 598–607.
G. Lindeberg and H. Malmgren (1952). Enzymatic breakdown of polymetaphosphale. VI. Influence
of nutritional factors on the polymetaphosphatase production of Aspergillus niger. Acta Chem.
Scand., 6, 27–37.
F. Lipmann (1965). Projecting backward from the present stage of evolution of biosynthesis. In S.
W. Fox (Ed.), The Origin of Prebiotic Systhems and their Molecular Matrices, Academic Press,
New York, pp. 212–216.
F. Lipmann (1971). Gramicidin S and tyrocidine biosynthesis: primitive process of ‘sequential
addition of amino acids on polyenzymes’. In R. Buvet and C. Ponnamperuma (Eds), Molecular
Evolution, Vol. 1, Chemical Evolution and the Origin of Life, North-Holland, Amsterdam, The
Netherlands, p. 381.
E. Liss and P. Langen (1960). Uber die hochmoleculares Polyphosphat der Hefe. Biochem. Z., 333,
193–201.
E. Liss and P. Langen (1962). Versuche zur Polyphosphat-Uberkompensation in Heffenzellen nach
Phosphatverarmung. Arch. Microbiol., 41, 383–392.
W. T. Liu, A. T. Nielsen, J. H. Wu, C. S. Tsai, Y. Matsuo and S. Molin (2001). In situ identification
of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a
biological phosphorus removal process. Environ. Microbiol., 3, 110–122.
P. C. Loewn, B. Hu, J. Strutinsky and R. Sparling (1998). Regulation in the rpoS regulon of
Escherichia coli. Can. J. Microbiol., 44, 707–717.

