Page 261 - The Biochemistry of Inorganic Polyphosphates
P. 261
15:57
Char Count= 0
WU095/Kulaev
March 9, 2004
WU095-Ref
References 245
inorganqucs. II. Misc an point d’une technqe de separation par adsorbtion differentielle sur
charbon. Bull. Soc. Chim. Biol., 44, 1175–1184.
E. V. Murashova and N. N. Chudinova (1997). Crystal structures of polyphosphates NaCd(PO 3 ) 3
and NaMn(PO 3 ) 3 . Kristallografiya, 42, 416–420.
E. V. Murashova and N. N. Chudinova (1999). Synthesis and crystal structure of cyclododecaphos-
phate, Cs 3 Fe 3 P 12 O 36 . Russ. J. Inorg. Chem., 44, 1862–1865.
K. Murata, J. Kato and I. Chibata (1979). Continuous production of NADP by immobilized
Brevibacterium ammoniagenes cells. Biotechnol. Bioeng., 21, 887–895.
K. Murata, T. Uchida, J. Kato and I. Chibata (1988). Polyphosphate kinase: Distribution, some
properties and its application as an ATP regenerating system. Agric. Biol. Chem., 52, 1471–1477.
R. G. E. Murray, R. N. Doetsh and C. F. Robinow (1994). Determinative and cytological light mi-
croscopy. In P. Gerhardt, R. G. E. Murray, W. A. Wood and N. R. Krieg (eds), Methods for General
andMolecularBacteriology,AmericanSocietyofMicrobiology,Washington,DC,USA,pp.21–41.
M. M¨ussig-Zufika, A. K¨ornmuller, B. Merkelbach and M. Jekel (1994). Isolation and analysis of
intact polyphosphate chains from activated sludges associated with biological phosphate removal.
Water Res., 28, 1725–1733.
K. Nakamura, A. Hiraishi, Y. Yoshimi, M. Kawaharasaki, K. Masuda and Y. Kamagata (1995).
Microlunatus phosphovorus gen. nov. sp. nov., a new gram-positive polyphosphate-accumulating
bacterium isolated from activated sludge. Int. J. System. Bacteriol., 45, 17–22.
H. Nassery (1969). Polyphosphate formation in the roots Deschampsia flexiosa and Urtica dioica.
New Phytol., 68, 21–33.
A. V. Naumov, Yu. A. Shabalin, V. M. Vagabov and I. S. Kulaev (1985). Two pathways of
dephosphorylation of dolichyl diphosphate in yeasts. Biochemistry (Moscow), 50, 551–556.
I. B. Naumova, G. N. Streshinskaya and A. D. Gololobov (1968). Phosphorus-containing non-nucleic
polymers in some species of yeasts grown on various media (in Russian). Dokl. Akad. Nauk SSSR,
182, 465–468.
S. M. Navashin, G. N. Telesnina, Yu. E. Bartoshevich, I. N. Krakhmaleva, S. V. Dmitrieva, A. V.
Arushanyan, I. S. Kulaev and Yu. O. Sazykin (1983). Studies on the correlation between content of
high energy phosphates and biosynthesis of fusidic acid in Fusidium coccineum. Arch. Microbiol.,
135, 137–140.
31
G. Navon, S. Ogawa, R. Schulman and T. Yamane (1977a). P nuclear magnetic resonance studies
of Ehrlich ascites tumor cells. Proc. Natl. Acad. Sci. USA, 74, 87–91.
G. Navon, S. Ogawa, R. Schulman and T. Yamane (1977b). High resolution 31 P nuclear magnetic
resonance studies of metabolism in aerobic Escherichia coli cells. Proc. Natl. Acad. Sci. USA, 74,
888–891.
G. Navon, R. G. Shulman, T. Yamana, T. R. Eccleshall, K. B. Lam, J. J. Baronofsky and J. Marmur
(1979). Phosphorus-31 nuclear magnetic resonance studies of wild type and glucolytic pathway
mutants of Saccharomyces cerevisiae. Biochemistry, 18, 4487–4499.
D. W. Neef and M. P. Kladde (2003). Polyphosphate loss promotes SNF/SWI and Gen5-dependent
mitotic induction of PHO5. Mol. Cell Biol., 23, 3788–3897.
N. Nelson (1992). Evolution of organeller proton-ATPases. Biochim. Biophys. Acta, 1100, 109–124.
S. R. Nelson, L. M. Wolford, R. J. Lagow, P. J. Capano and W. L. Davis (1993). Evaluation of
new high-performance calcium polyphosphate bioceramics as bone graft materials. J. Oral
Maxilofacial Surg., 51, 1363–1371.
M. A. Nesmeyanova (2000). Polyphosphates and enzymes of polyphosphate metabolism in
Escherichia coli. Biochermistry (Moscow), 65, 309–325.