Page 263 - The Biochemistry of Inorganic Polyphosphates
P. 263
15:57
Char Count= 0
WU095/Kulaev
March 9, 2004
WU095-Ref
References 247
occurring at the stage of nuclear division in Chlorella cells. I. J. Biochem. (Tokyo), 42, 245–
256.
T. Nihei (1957). A phosphorylative process, accompanied by photochemical liberation of oxygen,
occurring at the stage of nuclear division in Chlorella cells. II. J. Biochem (Tokyo), 44, 389–396.
D. J. Nikitin, D. J. Slabova, M. A. Bobyk and L. V. Andreev (1979). The peculiarity of metabolism of
oligoenergophylic bacteria (in Russian). In Proceedings of Conference, Regulation of Biochemical
Processes in Microorganisms, USSR Academy of Sciences Publishers, Pushcino on-Oka, Russian
Federation, pp. 176–182.
W. Niklowitz (1957). ¨ Uber den Feinbau der Mitochondrien des Schlempilzen Badihamia utricularis.
Exp. Cell. Res., 13, 591–603.
W. Niklowitz and G. Drews (1955). Zur electronenmicroskopischen Darstellung der Feinstructur
von Rhodospirillum rubrum (Ergebnisse einer neuen, einfachen Dunnschnittmethode). Arch.
Microbiol., 23, 123–131.
A. Nishi (1961). Role of polyphosphate and phospholipid in germinating of spores of Aspergillus
niger. J. Bacteriol., 81, 10–17.
K. Nishimura, K. Yasumura, K. Igarashi and Y. Kakinuma (1999). Involvement of Spt7p in vacuolar
polyphosphate level of Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun., 257, 835–838.
T. Noguchi and T. Shiba (1998). Use of Escherichia coli polyphosphate kinase for oligosaccharide
synthesis. Biosci. Biotechnol. Biochem., 62, 1594–1596.
C. G. Nunez and A. S. Callieri (1989). Studies on the polyphosphate cycle in Candida utilis. Effect
of dilution rate and nitrogen so urce in continuous culture. Appl. Microbiol. Biotechnol., 31, 562–
566.
T. Nystrom (1994). Role of guanosine tetraphosphate in gene expression and the survival of glucose
or seryl-tRNA starved cells of Escherichia coli K-12. Mol. Gen. Genet., 245, 355–362.
T. Nystrom (2003). Conditional senescence in bacteria: death of the immortals. Mol. Microbiol., 48,
17–23.
S. Offenbacher and H. Kline (1984). Evidence for polyphosphate in phosphorylated non histone
nuclear proteins. Arch. Biochem. Biophys., 231, 114–123.
J. Ogawa and Y. Amano (1987). Electron microprobe X-ray analysis of polyphosphate granules in
Plesiomonas shigelloides. Microbiol. Immunol., 31, 1121–1125.
N. Ogawa, J. DeRisi and P. O. Brown (2000a). New components of a system for phosphate
accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic
expression analysis. Mol. Biol. Cell, 11, 4309–4321.
N. Ogawa, C. M. Tzeng, C. D. Fraley and A. Kornberg (2000b). Inorganic polyphosphate in Vibrio
cholerae: genetic, biochemical and physiologic features. J. Bacteriol., 182, 6687–6693.
S. Ohashi (1975). Chromatography of phosphorus oxyacids, Pure Appl. Chem., 44, 415–421.
S. Ohashi and J. R. Van Wazer (1964). Paper chromatography of very long chain polyphosphates.
Anal. Chem., 35, 1984–1996.
Y. Ohsumi and Y. Anraku (1983). Calcium transport driven by a protonmotive force in vacuolar
membrane vesicles of Saccharomyces cerevisiae. J. Biol. Chem., 258, 5614–5617.
H. Ohtake and A. Kuroda (2000). Molecular analysis of polyphosphate accumulation in bacteria.
Biochemistry (Moscow), 65, 304–309.
H. Ohtake, K. Yamada, Hardoyo, A. Muramatsu, Y. Anbe, J. Kato and H. Shinjo (1994). Genetic
approach to enhanced biological phosphorus removal. Water Sci. Technol., 230, 185–192.
H. Ohtake, A. Kuroda, J. Kato and T. Ikeda (1999). Genetic improvement of bacteria for enhanced
removal of phosphate from wastewater. In H. C. Schr¨oder and W. E. G. M¨uller (Eds.), Inorganic