Page 268 - The Biochemistry of Inorganic Polyphosphates
P. 268
WU095/Kulaev
WU095-Ref
References
252 March 9, 2004 15:57 Char Count= 0
R. N. Reusch (1989). Poly-beta-hydroxybutirate/calcium polyphosphate complexes in eukaryotic
membranes. Roc. Soc. Exper. Biol. Med., 191, 377–381.
R. N. Reusch (1992). Biological complexes of poly-β-hydroxybutyrate. FEMS Rev., 103, 119–130.
R. N. Reusch (1999a). Polyphosphate/poly-(R)-3-hydroxybutyrate in channels ion cell membranes.
In H. C. Schr¨oder and W. E. G. M¨uller (Eds), Inorganic Polyphosphates. Biochemistry, Biol-
ogy, Biotechnology, Progress in Molecular and Subcellular Biology (Special Issue), Vol. 23,
Springer-Verlag, Berlin, pp. 151–183.
R. N. Reusch (1999b). Streptomyces lividans potassium channel contains poly-(R)-3-hydroxybutyrate
and inorganic polyphosphate. Biochemistry, 38, 15666–15672.
R. N. Reusch (2000). Transmembrane ion transport by polyphosphate/poly-(R)-3-hydroxybutyrate
complexes. Biochemistry (Moscow), 65, 280–296.
R. N. Reusch and H. L. Sadoff (1988). Putative structure and functions of poly-beta-
hydroxybutirate/calcium polyphosphate channel in bacterial plasma membranes, Proc. Natl.
Acad. Sci. USA, 85, 4176–4180.
R. N. Reusch, T. W. Hiske and H. L. Sadoff (1986). Poly-β-hydroxybutyrate membrane structure
and its relationship to genetic transformability in Escherichia coli. J. Bacteriol., 168, 553–562.
R. N. Reusch, R. Huang and L. L. Bramble (1995). Poly-3-hydroxybutyrate/polyphosphate
complexes from voltage-activated/Ca 2+ channels in the plasma membranes of Escherichia coli.
Biophys. J., 69, 754–766.
R. N. Reusch, R. P. Huang and D. Koskkosicka (1997). Novel components and enzymatic activities
of the human erythrocyte plasma membrane calcium pump. FEBS Lett., 412, 592–596.
R. N. Reusch, O. Shabalin, A. Crumbaugh, R. Wagner, O. Schroder and R. Wurm (2002). Post-
translational modification of E. coli histone-like protein H-NS and bovine histones by short-chain
poly-(R)-3-hydroxybutyrate (cPHB). FEBS Lett., 527, 319–322.
G.-Y. Rhee (1973). A continuous culture study of phosphate uptake, growth rate and polyphosphate
in Scenedesmus sp. J. Phycol., 9, 459–506.
C. Richter (1966). Pulse-labelling of nucleic acids and polyphosphates in normal and annuculated
cells of Acetabularia. Nature (London), 212, 1363–1365.
M. F. Roberts (1987). Polyphosphates. In C. T. Bert (Ed.), Phosphorus NMR in Biology, CRC Press,
Boca Raton, FL, USA, pp. 85–94.
N. A. Robinson and H. G. Wood (1986). Polyphosphate kinase from Propionibacterium shermanii.
Demonstration that the synthesis and utilization of polyphosphate is by processive mechanism. J.
Biol. Chem., 261, 4481–4485.
N. A. Robinson, N. H. Goss and H. G.Wood (1984). Polyphosphate kinase from Propionibaterium
shermanii: formation of an enzymatically active soluble complex with basic proteins and
characterization of synthesed polyphosphate. Biochem. Int., 8, 757–769.
N. A. Robinson, J. E. Clark and H. G. Wood (1987). Polyphosphate kinase from Propionibacterium
shermanii. Demonstration that polyphosphates are primers and determination of the size of the
synthesized polyphosphate. J. Biol. Chem., 262, 5216–5222.
R. J. Rodriguez (1993). Polyphosphate present in DNA preparation from filamentous fungal species
of Colleotrichum inhibits restriction endonucleases and other enzymes. Anal. Biochem., 209, 291–
297.
C. O. Rodrigues, F. A. Ruiz, M. Vieira, J. E. Hill and R. Docampo (2002a). An acidocalcisomal
exopolyphosphatase from Leishmania major with high affinity for short-chain polyphosphate.
J Biol Chem., 277, 50899–50906.
C. O. Rodrigues, F. A. Ruiz, P. Rohloff, D. A. Scott and S. N. J. Moreno (2002b). Characterization of