Page 269 - The Biochemistry of Inorganic Polyphosphates
P. 269
15:57
Char Count= 0
WU095/Kulaev
March 9, 2004
WU095-Ref
References 253
isolated acidocalcisomes from Toxoplasma gondii tachyzoites reveals a novel pool of hydrolysable
polyphosphate. J. Biol. Chem., 277, 48650–48656.
H. Rosenberg (1966). The isolation and identification of ‘volutin’ granules from Tetrahymena. Exp.
Cell Res., 41, 397–403.
E. E. Rotenbach and S. Hinkelmann (1954). Uber Poly- and Methaphosphatasen der Gerste.
Naturwissenschaften, 41, 555–568.
M. Rubio-Texeira, J. M. Varnum, P. Bieganowski and C. Brenner (2002). Control of dinucleoside
polyphosphates by the FHIT-homologous HNT2 gene, adenine biosynthesis and heat shock in
Saccharomyces cerevisiae. BMC Mol. Biol., 3, 7–12.
P. M. Rubtsov and I. S. Kulaev (1977). Some pathways of biosynthesis and breakdown of polyphos-
phates in the green algae Acetabularia mediterranea. Biokhimiya (Moscow), 42, 1083–1089.
P. M. Rubtsov, N. V. Efremovich and I. S. Kulaev (1977). The absence of high-molecular polyphos-
phates from the chloroplasls of Acetabularia niediterrunea. Biokhimiya (Moscow), 42, 890–
897.
H. Rudnick, S. Hendrich, U. Pilatus and K.-H. Blotevogel (1990). Phosphate accumulation and the
occurrence of polyphosphates and cyclic 2,3-diphosphoglycerate in Methanoasrcina frisia. Arch.
Microbiol., 154, 584–588.
F. A. Ruiz, C. O. Rodrogues and R. Docampo (2001a). Rapid changes in polyphosphate content
within acidocalcisomes in response to cell growth, differentiation and environmental stress in
Trypanosoma cruzi. J. Biol. Chem., 276, 26114–26121.
F. A. Ruiz, N. Marchesini, M. Seufferheld, M. Govindjee and R. Docampo (2001b). The polyphos-
phate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are
similar to acidocalcisomes. J. Biol. Chem., 276, 46196–46203.
H. G. Ruska, W. Bringmann, J. Nechel and G. Schuster (1951/52). ¨ Uber die Entwicklung sowie
den morphologischen und cytologischen Aufbau von Mycohacterium avium (Chester). Z. Wiss.
Mikroskop., 60, 425–447.
S. T. Safrany, S. W. Ingram, J. L. Cartwright, J. R. Falck, A. G. McLennan, L. D. Barnes and
S. B. Shears (1999). The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe
and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate
phosphohydrolase. Overlapping substrate specificities in a MutT-type protein. J. Biol. Chem., 274,
21735–21740.
J. M. Salhany, T. Yamane, R. G. Schulman and S. Ogawa (1975). High resolution 31 P nuclear
magnetic resonance studies of intact yeast cells. Proc. Natl. Acad. Sci. USA, 72, 4966–4970.
T. Sall, S. Mudd and J. C. Davis (1956). Factors conditioning the accumulation and disappearance
of metaphosphate in cells of Corynebacterium diphtheriae. Arch. Biochem. Biophys., 60, 130–
146.
T. Sall, S. Mudd and A. Takagi (1958). Phosphate accumulation and utilization as related to
synchronized cell division of Corynebacterium diphtheriae. J. Bacteriol., 76, 640–645.
O. Samuelson (1955). Ion Exchange in Analytical Chemistry, Izdatelstvo IL, Moscow.
H. W. Sauer, K. L. Babcock and H. P. Rusch (1956). High molecular weight phosphorus compound
in nucleic acid extracts of the slime mould Physarum polycephalum. J. Bacteriol., 99, 650–661.
W. B. Schaefer and C. W. Lewis (1965). Effect of oleic acid on growth and cell structure of
Mycobacteria. J. Bacteriol., 90,1438–1446.
P. A. Scherer and H. P. Bochem (1983). Ultrastructural investigation of 12 Methanosarcinae and
related species grown on methanol for occurrence of polyphosphate-like inclusions. Can. J.
Microbiol., 29, 1190–1199.