Page 266 - The Biochemistry of Inorganic Polyphosphates
P. 266
WU095/Kulaev
WU095-Ref
References
250 March 9, 2004 15:57 Char Count= 0
J. H. Peverly, J. Adamec and M. V. Parthasarathy (1978). Association of potassium and some other
monovalent cations with occurrence of polyphosphate bodies in Chlorella pyrenoidosa. Plant.
Physiol., 62, 120–126.
A. M. Pfarrer, D. J. White, M. Rapozo-Hilo and J. D. Featherstone (2001). Anticaries and hard tissue
abrasion effects of a ‘dual-action’ whitening, sodium hexametaphosphate tartar control dentifrice.
J. Clin. Dent., 13, 50–54.
N. F. B. Phillips, P. J. Horn and H. G. Wood (1993). The polyphosphate and ATP dependent
glucokinase from Propionibacterium shermanii: both activities are catalyzed by the same protein.
Arch. Biochem. Biophys., 300, 309–319.
N. F. B. Phillips, P. C. Hsien and T. H. Kowalczyk (1999). Polyphosphate glucokinase. In H. C.
Schr¨oder and W. E. G. M¨uller (Eds), Inorganic Polyphosphates. Biochemistry, Biology, Biotech-
nology, Progress in Molecular and Subcellular Biology (Special Issue), Vol. 23, Springer-Verlag,
Berlin, pp. 101–127.
U. Pick and M. Weiss (1991). Polyphosphate hydrolysis within acidic vacuoles in responce to amino-
induced alkaline stress in the halotolerant alga Dunaliella salina. Plant. Physiol., 97, 1234–1240.
U. Pick, M. Bental, E. Chitlaru and M. Weiss (1990). Polyphosphate-hydrolysis – a protective
mechanism against alkaline stress? FEBS Lett., 274, 15–18.
W. S. Pierpoint (1957a). The phosphatase and metaphosphatase activities of pea extract. Biochem.
J., 65, 67–76.
W. S. Pierpoint (1957b). The phosphoesterase of pea plants (Pisum sativum L.). Biochem. J., 67,
644–657.
W. S. Pierpoint (1957c). Polyphosphates excreted by wax-moth larvae (Galleria mellonella and
Achroea grisella (Fabr.). Biochem. J., 67, 624–627.
U. Pilatus, A. Mayer and A. Hildebrandt (1989). Nuclear polyphosphate as a possible source of
energy during the sporulation of Physarum polycephalum. Arch. Biochem. Biophys., 275, 215–223.
R. M. Pilliar, M. J. Filiaggi, J. D. Wells, M. D. Grynpas and R. A. Kandel (2001). Porous calcium
polyphosphate scaffolds for bone substitute applications – in vitro characterization. Biomaterials,
22, 963–972.
A. Pirson and A. Kuhl (1958). ¨ Uber den Phosphataushalt von Hydrodictyon. I. Arch. Mikrobiol., 30,
211–225.
R. L. Pisoni and E. R. Lindley (1992). Incorporation of [32-P] orthophosphate into long chains of
inorganic polyphosphates within lysosomes of human fibroblasts. J. Biol. Chem., 267, 3626–3631.
S. Pitsch, A. Eschenmoser, B. Gedulin, S. Hui and G. Arrhenius (1995). Mineral induced formation
of sugar phosphates. Origin Life Evol. Biosph., 25, 297–334.
C. Ponnamperuma, C. Sagan and R. Mariner (1963). Synthesis of adenosine triphosphate under
possible primitive earth conditions. Nature (London), 199, 222–224.
P. F. Porciani, S. Grandini and S. Sapio (2003). Anticalculus efficacy of a chewing gum with
polyphosphates in a twelve-week single-blind trial. J. Clin. Dent., 14, 45–47.
A. A. Prokof’eva-Bel’govskaya and L. A. Kats (1960). The chemical nature of volutin in
Actinomycetes (in Russian). Microbiologiia, 29, 826–841.
R. Psenner, R. Pucsko and M. Sager (1984). Fractionation of phosphorus in suspended matter and
sediment. Arch. Hydrobiol. Beih. Ergeb. Limnol., 30, 98–103.
J. Rabinowitz and A. Hampai (1984). Quantitative polyphosphate-induced ‘prebiotic’ peptide
formation in H 2 O by addition of certain azoles and ions. J. Mol. Evol., 21, 199–201.
J. Rabinowitz, S. Chang and C. Ponnamperuma (1968). Phosphorylation by way of inorganic
phosphate as a potential protobiotic process. Nature (London), 218, 442–444.