Page 267 - The Biochemistry of Inorganic Polyphosphates
P. 267

15:57
                                                     Char Count= 0
                        WU095/Kulaev
                                    March 9, 2004
               WU095-Ref
                                                                             References      251
                        J. Rabinowitz, J. Flores, R. Krcbsbuch and G. Rogers (1969). Peptide formation in the presence of
                          linear or cyclic polyphosphates. Nature (London), 224, 795–797.
                        K. T. Rajkowski, S. M. Calderone and E. Jones (1994). Effect of polyphosphate and sodium chloride
                          on the growth of Listeria monocytogenes and Staphylococcus aureus in ultra-high temperature
                          milk. J. Dairy Sci., 77, 1503–1508.
                        C. Ramesh, P. Chellappan and A. Mahadevan (2000). X-ray microanalysis of elements of VA
                          mycorrhizal and non-mycorrhizal Pennisetum pedicellatum roots. Ind. J. Exp. Biol., 38, 396–398.
                        N. N. Rao and A. Kornberg (1996). Inorganic polyphosphates support resistance and survival of
                          stationary-phase Escherichia coli, J. Bacteriol., 178, 1394–1400.
                        N. N. Rao and A. Kornberg (1999). Inorganic polyphosphate regulates responces of Escherivhia coli
                          to nutritional stringencies, envinronmental stresses and survival in the stationary phase. In H. C.
                          Schr¨oder and W. E. G. M¨uller (Eds), Inorganic Polyphosphates. Biochemistry, Biology, Biotech-
                          nology, Progress in Molecular and Subcellular Biology (Special Issue), Vol. 23, Springer-Verlag,
                          Berlin, pp. 183–197.
                        N. N. Rao and A. Torriani (1988). Utilization by Escherichia coliof high-molecular-weight linear
                          polyphosphate: roles of phosphates and pore proteins. J. Bacteriol., 170, 5216–5223.
                        N. N. Rao, M. F. Roberts and A. Torriani (1985). Amount and chain length of polyphosphates in
                          Escherichia coli depend on cell growth conditions. J. Biol. Chem., 162, 242–247.
                        N. N. Rao, S. Liu and A. Kormberg (1998). Inorganic polyphosphate in Escherichia coli: the
                          phosphate regulon and the stringent response. J. Bacteriol., 180, 2186–2193.
                        M. H. Rashid and A. Kornberg (2000). Inorganic polyphosphate is needed for swimming, swarming,
                          and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 97, 4885–
                          4890.
                        M. H. Rashid, N. N. Rao and A. Kornberg (2000a). Inorganic polyphosphate is required for motility
                          of bacterial pathogens. J. Bacteriol., 182, 225–227.
                        M. H. Rashid, K. Rumbaugh, L. Passador, D. G. Davies, N. Hamood, B. H. Iglewski and A.
                          Kornberg (2000b). Polyphosphate kinase is essential for biofilm development, quorum sensing,
                          and virulence of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 97, 9636–9641.
                        N. Rautanen and P. Mikkulainen (1951). On the phosphorus fractions and the uptake of phosphorus
                          by Torulopsis utilis. Acta Chem. Scand., 5, 89–96.
                        V. Reader (1927). The relation of the growth of certain microorganisms to the composition of the
                          medium:I. The synthetic culture. Biochem. J., 21, 901–907.
                        G. N. Rees, G. Vasiliadis, J. W. May and R. C. Bayly (1992). Differentiation of polyphosphate and
                          poly-beta-hydroxybutyrate granules in an Acinetobacter sp. isolated from activated sludge. FEMS
                          Microbiol. Lett., 73, 171–173.
                                                             31
                        H. H. Reidl, T. A. Grover and J. Y. Takemoto (1989). P-NMR evidence for cytoplasmic acidification
                          and phosphate extrusion in syringomycin-treated cells of Rhodotorula pilimana. Biochem.
                          Biophys. Acta., 1010, 325–329.
                        J. Reizer, A. Reizer, M. H. Saier Jr., B. Bork and C. Sander (1993). Exopolyphosphate phosphatase
                          and guanosine pentaphosphate phosphatase belong to the sugar kinase/actin/hsp 70 superfamily.
                          Trends Biochem. Sci., 18, 247–248.
                        M. L. Renier and D. H. Kohn (1997). Development and characterization of a biodegradable
                          polyphosphate. J. Biomed. Mater. Res., 34, 95–104.
                        S. M. Resnick and A. J. Zehnder (2000). In vitro ATP regeneration from polyphosphate and AMP
                          by polyphosphate: AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii
                          210A. Appl. Environ. Microbiol., 6, 2045–2051.
   262   263   264   265   266   267   268   269   270   271   272