Page 267 - The Biochemistry of Inorganic Polyphosphates
P. 267
15:57
Char Count= 0
WU095/Kulaev
March 9, 2004
WU095-Ref
References 251
J. Rabinowitz, J. Flores, R. Krcbsbuch and G. Rogers (1969). Peptide formation in the presence of
linear or cyclic polyphosphates. Nature (London), 224, 795–797.
K. T. Rajkowski, S. M. Calderone and E. Jones (1994). Effect of polyphosphate and sodium chloride
on the growth of Listeria monocytogenes and Staphylococcus aureus in ultra-high temperature
milk. J. Dairy Sci., 77, 1503–1508.
C. Ramesh, P. Chellappan and A. Mahadevan (2000). X-ray microanalysis of elements of VA
mycorrhizal and non-mycorrhizal Pennisetum pedicellatum roots. Ind. J. Exp. Biol., 38, 396–398.
N. N. Rao and A. Kornberg (1996). Inorganic polyphosphates support resistance and survival of
stationary-phase Escherichia coli, J. Bacteriol., 178, 1394–1400.
N. N. Rao and A. Kornberg (1999). Inorganic polyphosphate regulates responces of Escherivhia coli
to nutritional stringencies, envinronmental stresses and survival in the stationary phase. In H. C.
Schr¨oder and W. E. G. M¨uller (Eds), Inorganic Polyphosphates. Biochemistry, Biology, Biotech-
nology, Progress in Molecular and Subcellular Biology (Special Issue), Vol. 23, Springer-Verlag,
Berlin, pp. 183–197.
N. N. Rao and A. Torriani (1988). Utilization by Escherichia coliof high-molecular-weight linear
polyphosphate: roles of phosphates and pore proteins. J. Bacteriol., 170, 5216–5223.
N. N. Rao, M. F. Roberts and A. Torriani (1985). Amount and chain length of polyphosphates in
Escherichia coli depend on cell growth conditions. J. Biol. Chem., 162, 242–247.
N. N. Rao, S. Liu and A. Kormberg (1998). Inorganic polyphosphate in Escherichia coli: the
phosphate regulon and the stringent response. J. Bacteriol., 180, 2186–2193.
M. H. Rashid and A. Kornberg (2000). Inorganic polyphosphate is needed for swimming, swarming,
and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 97, 4885–
4890.
M. H. Rashid, N. N. Rao and A. Kornberg (2000a). Inorganic polyphosphate is required for motility
of bacterial pathogens. J. Bacteriol., 182, 225–227.
M. H. Rashid, K. Rumbaugh, L. Passador, D. G. Davies, N. Hamood, B. H. Iglewski and A.
Kornberg (2000b). Polyphosphate kinase is essential for biofilm development, quorum sensing,
and virulence of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 97, 9636–9641.
N. Rautanen and P. Mikkulainen (1951). On the phosphorus fractions and the uptake of phosphorus
by Torulopsis utilis. Acta Chem. Scand., 5, 89–96.
V. Reader (1927). The relation of the growth of certain microorganisms to the composition of the
medium:I. The synthetic culture. Biochem. J., 21, 901–907.
G. N. Rees, G. Vasiliadis, J. W. May and R. C. Bayly (1992). Differentiation of polyphosphate and
poly-beta-hydroxybutyrate granules in an Acinetobacter sp. isolated from activated sludge. FEMS
Microbiol. Lett., 73, 171–173.
31
H. H. Reidl, T. A. Grover and J. Y. Takemoto (1989). P-NMR evidence for cytoplasmic acidification
and phosphate extrusion in syringomycin-treated cells of Rhodotorula pilimana. Biochem.
Biophys. Acta., 1010, 325–329.
J. Reizer, A. Reizer, M. H. Saier Jr., B. Bork and C. Sander (1993). Exopolyphosphate phosphatase
and guanosine pentaphosphate phosphatase belong to the sugar kinase/actin/hsp 70 superfamily.
Trends Biochem. Sci., 18, 247–248.
M. L. Renier and D. H. Kohn (1997). Development and characterization of a biodegradable
polyphosphate. J. Biomed. Mater. Res., 34, 95–104.
S. M. Resnick and A. J. Zehnder (2000). In vitro ATP regeneration from polyphosphate and AMP
by polyphosphate: AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii
210A. Appl. Environ. Microbiol., 6, 2045–2051.