Page 265 - The Biochemistry of Inorganic Polyphosphates
P. 265

15:57
                                                     Char Count= 0
                        WU095/Kulaev
                                    March 9, 2004
               WU095-Ref
                                                                             References      249
                        S. Overbeck (1962). Untersuchungen sum Phosphataushalt von Gr¨unalgen. III. Das Verhalten der
                          Zellfraktionen von Scenedesmus quadrianda (Turp.) Breb in Tagescyclus unter vcrschiedenen Be-
                          lichtungsbedingungen und bei verschiedenen Phosphatverbindungen. Arch. Mikrobiol., 41,11–26.
                        M. V. Pakhomova, G. T. Darkanbaeva and G. N. Zaitseva (1966). The effect of light and darkness
                          on the acid-soluble phosphorus compounds of the green alga Scenedesmus obliquus (K¨utz.).
                          Biokhimiya (Moscow), 31, 1237–1245.
                        K. K. Palkina, C. I. Maximova, V. G. Kuznezov and N. N. Chudinova (1979). The crystal structure
                          of double octametaphosphate, K 2 Ga 2 P 8 O 24 , Dokl. Akad. Nauk SSSR, 245, 1386–1389.
                        S. A. Palumbo, J. E. Call, P. H. Cooke and A. C. Williams (1995). Effect of polyphosphates and
                          NaCl on Aeromonas hydrophila K144. J. Food Safety, 15, 77–87.
                        H. Pan-Hou, M. Kiyono, H. Omura T. Omura and G. Endo (2002). Polyphosphate produced in
                          recombinant Escherichia coli confers mercury resistance. FEMS Microbiol. Lett., 10325, 159–
                          164.
                        I. Pastuszak and M. Szymona (1980). Occurrence of a large molecular size from polyphosphate–
                          glucose phosphotransferase in extracts of Mycobacterium tuberculosis H 37 Ra. Acta Microbiol.
                          Pol., 29, 49–56.
                        R. Penniall and J. B. Griffin (1964). Studies of phosphorus metabolism by isolated nuclei. IV.
                          Formation of polyphosphate. Biochim. Biophys. Acta, 90, 429–435.
                        R. Penniall and J. B. Griffin (1984). Studies of phosphorus metabolism by isolated nuclei. XII. Some
                          fundamental properties of the incorporation of  32 P into polyphosphate by rat liver nuclei. Biosci.
                          Rep., 4, 957–962.
                        C. A. Pepin and H. G. Wood (1986). Polyphosphate glucokinase from Propionibacterium shermanii:
                          kinetics and demonstration that the mechanism involves both processive and nonprocessive type
                          reactions. J. Biol. Chem., 261, 4476–4480.
                        C. A. Pepin and H. G. Wood (1987). The mechanism of utilization of polyphosphate by polyphosphate
                          glucokinase from Propionibacterium shermanii. J. Biol. Chem., 262, 5223–5226.
                        C. A. Pepin, H. G. Wood and N. A. Robinson (1986). Determination of the size of polyphosphates
                          with polyphopshate glucokinase. Biochem. Int., 12, 111–123.
                        G. Perlmann (1938). Metaphosphate–protein complexes. Biochem. J., 32, 931–938.
                        H. Pereira, P. C. Lemos, M. J. T. Carrondo, J. P. S. Crespo, M. A. M. Peis and H. Santos (1996).
                          Model for carbon metabolism in biological phosphorus removal processes based on in vivo  13 C
                          labelling experiment. Water Res., 30, 2128–2138.
                        B. L. Persson, J. O. Lagerstedt, J. R. Pratt, J. Pattison-Granberg, K. Lundh, S. Shokrollahzadeh and
                          F. Lundh (2003). Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr. Genet.,
                          43, 225–244.
                        N. A. Pestov, T. V. Kulakovskaya and I. S. Kulaev (2003). Polyphosphates and exopolyphos-
                          phatases of the yeast Saccharomyces cerevisiae mitochondria under the conditions of phosphate
                          hypercompensation. Dokl. Biochem. Biophys., 389, 126–129.
                        E. Petras (1958). Nucleinsaure- und Phosphataushalt von Phycomyces blakesleanus (Bgtt). Arch.
                          Microbiol., 30, 433–439.
                        V. V. Petrov and L. A. Okorokov (1990). Increase of the anion and proton permeability of Saccha-
                          romyces carlsbergensis plasmalemma by n-alcohols as a possible cause of its de-energization.
                          Yeast, 6, 311–318.
                        A. Pettersson, L. Kunst, B. Bergman and G. M. Roomans (1985). Accumulation of alumunium
                          by Anabaena cylindrica into polyphosphate granules and cell walls: an X-ray energy disperse
                          microanalysis study. J. Gen. Microbiol., 131, 2545–2548.
   260   261   262   263   264   265   266   267   268   269   270