Page 265 - The Biochemistry of Inorganic Polyphosphates
P. 265
15:57
Char Count= 0
WU095/Kulaev
March 9, 2004
WU095-Ref
References 249
S. Overbeck (1962). Untersuchungen sum Phosphataushalt von Gr¨unalgen. III. Das Verhalten der
Zellfraktionen von Scenedesmus quadrianda (Turp.) Breb in Tagescyclus unter vcrschiedenen Be-
lichtungsbedingungen und bei verschiedenen Phosphatverbindungen. Arch. Mikrobiol., 41,11–26.
M. V. Pakhomova, G. T. Darkanbaeva and G. N. Zaitseva (1966). The effect of light and darkness
on the acid-soluble phosphorus compounds of the green alga Scenedesmus obliquus (K¨utz.).
Biokhimiya (Moscow), 31, 1237–1245.
K. K. Palkina, C. I. Maximova, V. G. Kuznezov and N. N. Chudinova (1979). The crystal structure
of double octametaphosphate, K 2 Ga 2 P 8 O 24 , Dokl. Akad. Nauk SSSR, 245, 1386–1389.
S. A. Palumbo, J. E. Call, P. H. Cooke and A. C. Williams (1995). Effect of polyphosphates and
NaCl on Aeromonas hydrophila K144. J. Food Safety, 15, 77–87.
H. Pan-Hou, M. Kiyono, H. Omura T. Omura and G. Endo (2002). Polyphosphate produced in
recombinant Escherichia coli confers mercury resistance. FEMS Microbiol. Lett., 10325, 159–
164.
I. Pastuszak and M. Szymona (1980). Occurrence of a large molecular size from polyphosphate–
glucose phosphotransferase in extracts of Mycobacterium tuberculosis H 37 Ra. Acta Microbiol.
Pol., 29, 49–56.
R. Penniall and J. B. Griffin (1964). Studies of phosphorus metabolism by isolated nuclei. IV.
Formation of polyphosphate. Biochim. Biophys. Acta, 90, 429–435.
R. Penniall and J. B. Griffin (1984). Studies of phosphorus metabolism by isolated nuclei. XII. Some
fundamental properties of the incorporation of 32 P into polyphosphate by rat liver nuclei. Biosci.
Rep., 4, 957–962.
C. A. Pepin and H. G. Wood (1986). Polyphosphate glucokinase from Propionibacterium shermanii:
kinetics and demonstration that the mechanism involves both processive and nonprocessive type
reactions. J. Biol. Chem., 261, 4476–4480.
C. A. Pepin and H. G. Wood (1987). The mechanism of utilization of polyphosphate by polyphosphate
glucokinase from Propionibacterium shermanii. J. Biol. Chem., 262, 5223–5226.
C. A. Pepin, H. G. Wood and N. A. Robinson (1986). Determination of the size of polyphosphates
with polyphopshate glucokinase. Biochem. Int., 12, 111–123.
G. Perlmann (1938). Metaphosphate–protein complexes. Biochem. J., 32, 931–938.
H. Pereira, P. C. Lemos, M. J. T. Carrondo, J. P. S. Crespo, M. A. M. Peis and H. Santos (1996).
Model for carbon metabolism in biological phosphorus removal processes based on in vivo 13 C
labelling experiment. Water Res., 30, 2128–2138.
B. L. Persson, J. O. Lagerstedt, J. R. Pratt, J. Pattison-Granberg, K. Lundh, S. Shokrollahzadeh and
F. Lundh (2003). Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr. Genet.,
43, 225–244.
N. A. Pestov, T. V. Kulakovskaya and I. S. Kulaev (2003). Polyphosphates and exopolyphos-
phatases of the yeast Saccharomyces cerevisiae mitochondria under the conditions of phosphate
hypercompensation. Dokl. Biochem. Biophys., 389, 126–129.
E. Petras (1958). Nucleinsaure- und Phosphataushalt von Phycomyces blakesleanus (Bgtt). Arch.
Microbiol., 30, 433–439.
V. V. Petrov and L. A. Okorokov (1990). Increase of the anion and proton permeability of Saccha-
romyces carlsbergensis plasmalemma by n-alcohols as a possible cause of its de-energization.
Yeast, 6, 311–318.
A. Pettersson, L. Kunst, B. Bergman and G. M. Roomans (1985). Accumulation of alumunium
by Anabaena cylindrica into polyphosphate granules and cell walls: an X-ray energy disperse
microanalysis study. J. Gen. Microbiol., 131, 2545–2548.