Page 258 - The Biochemistry of Inorganic Polyphosphates
P. 258

WU095/Kulaev
               WU095-Ref
                                     References
                            242     March 9, 2004  15:57  Char Count= 0
                            J. Macary (1951). Des corpuscules metachromatiques des corynebacteries. Ann. Inst. Pasteur, 81,
                              657–662.
                            M. G. MacFarlane (1936). Phosphorylation in living yeast. Biochem. J., 30, 1369–1379.
                            S. K. Maier, S. Scherer and M. J. Loessner (1999). Long-chain polyphosphate causes cell lysis and
                              inhibits Bacillus cereus septum formation, which is dependent on divalent cations. Appl. Environ.
                              Microbiol., 65, 3942–3949.
                            H. Malmgren (1948). Contribution to the physical chemistry of colloid metaphosphates, Acta Chem.
                              Scand., 2, 147–160.
                            H. Malmgren (1949). Enzymatic breackdown of polymethaphosphate. IV. The activation and
                              inhibition of enzyme. Acta Chem. Scand., 3, 1331–1342.
                            H. Malmgren (1952). Enzymatic breackdown of polymetaphosphate. V. Purification and specificity
                              of the enzyme. Acta Chem. Scand., 6, 16–26.
                            T. Mann (1944a). Studies on the metabolism of mould fungi. I. Phosphorus metabolismin moulds.
                              Biochem. J., 38, 339–345.
                            T. Mann (1944b). Studies on the metabolism of mould fungi. II. Isolation of pyrophosphate and
                              metaphosphate from Aspergillus niger. Biochem. J., 38, 345–351.
                            S. E. Mansurova (1989). Inorganic pyrophosphate in mitochondrial metabolism. Biochim. Biophys.
                              Acta, 977, 237–247.
                            S. E. Mansurova, T. N. Belyakova and I. S. Kulaev (1973a). The role of inorganic polyphosphate in
                              the energy metabolism of mitochondria. Biokhimiya (Moscow), 38, 223–226.
                            S. E. Mansurova, Yu. A. Shakhov and I. S. Kulaev (1973b). The coupling of inorganic pyrophosphate
                              synthesis with respiration in animal tissue mitochondria (in Russian). Dokl. Akad. Nauk SSSR,
                              213, 1207–1209.
                            S. E. Mansurova, A. M. Shama, V. Yu. Sokolovskii and I. S. Kulaev (1975a). High-molecular
                              polyphosphates of rat liver nuclei. Their function during liver regeneration (in Russian). Dokl.
                              Akad. Nauk SSSR, 225, 717–720.
                            S. E. Mansurova, S. A. Ermakova, R. A. Zvyagil’skaya and I. S. Kulaev (1975b). The synthesis of
                              inorganic polyphosphate by mitochondria of the yeast-like fungus Endomyces magnusii linked to
                              the operation of the respiratory system (in Russian). Mikrobiologiia, 44, 874–879.
                            S. E. Mansurova, S. A. Ermakova and I. S. Kulaev (1976). The extramitochondrial energy-dependent
                              synthesis of inorganic pyrophosphate in yeasts. Biokhimiya (Moscow), 41, 1716–1719.
                            L. Margulis (1993). Symbiosis in Cell Evolution, Freeman, San Francisco, CA, USA.
                            G. D. Markham, E. W. Hafner, C. W. Tabor and H. Tabor (1980). Adenosylmethionine synthetase
                              from Escherichia coli. J. Biol. Chem., 255, 9082–9092.
                            A. M. Maszenan, R. J. Seviour, B. K. Patel, P. Schumann, J. Burghardt, Y. Tokiwa and H. M. Stratton
                              (2000). Three isolates of novel polyphosphate-accumulating gram-positive cocci, obtained from
                              activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new
                              species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp. nov. Int. J. Syst. Evol.
                              Microbiol., 50, 593–603.
                            P. Matile (1978). Biochemistry and function of vacuoles. Ann. Rev. Plant. Physiol., 29, 193–213.
                            A. Matsuoka, M. Tsutsumi and T. Watanabe (1995). Inhibitory effect of hexametaphosphate on the
                              growth of Staphylocaccus aureus. J. Food. Hyg. Soc. Jpn, 36, 588–594.
                            M.  Matsuhashi  (1963).  Die  Trennung  von  Polyphosphaten  durcvh  avionenaustausch-
                              Chromatographie. Z. Physiol. Chem., 333, 28–34.
                            H. Matsuzaki, R. Masuyama, M. Uehara, K. Nakamura and K. Suzuki (2001). Greater effect of
                              dietary potassium tripolyhosphate than potassium dihydrogenphosphate on the nephrocalcinosis
   253   254   255   256   257   258   259   260   261   262   263