Page 707 - The Mechatronics Handbook
P. 707

0066_Frame_C23  Page 15  Wednesday, January 9, 2002  1:53 PM









                                TABLE 23.5  Properties of the Fourier Transform
                                Property               Signal Description    Fourier Transform
                                Linearity          ax t()   + by t() ; a, b constants  aX f()  + bY f()
                                                                                 ∞
                                                           t
                                Evenness and oddness    x –() =  xt()    Xf() =  2 ∫  xt() cos ( 2πft) t
                                                                                           d
                                                        x –() =  x – t()         0  ∞
                                                          t
                                                                         Xf() =  – 2 ∫  xt() sin ( 2πft) t
                                                                                            d
                                                                                 0
                                                           (
                                Time shift                xt –  t)             e −j2πfτ X f()
                                                                                    f 
                                                                                1
                                Time scale                 x at()               -----X -- a 
                                                                                a
                                                                                  ∗
                                Time reversal              x(−t)                 X ()
                                                                                   f
                                                                                  (
                                Duality                    X t()                 x – )
                                                                                   f
                                Time convolution         x t()   ∗ y t()       X f()  Y f()
                                Frequency convolution     x t()  y t()        X f()  ∗ Y f()
                                                             j2πf 0 t
                                                                                 (
                                Modulation                xt()e                 X f – )
                                                                                    f 0
                                                           n
                                                          d
                                                                                   n
                                Time differentiation      -------xt()         (  j2pf ) Xf()
                                                          dt n
                                                                                   n
                                                                                 n
                                                                               j  d
                                                           n
                                Frequency differentiation  t x t()              ------ --------Xf()
                                                                               2p
                                                                                   n
                                                                                  df
                                                                            1
                                Integration              ∫  ∞  x τ() τd    ---------- Xf() +  1 --X 0()δ f()
                                                          – ∞              j2πf    2
                                                                (
                                                                 –
                                                                    d
                                Correlation         R xy τ() =  ∫  ∞  yt()xt τ) t  Y –(  f )  X f()
                                                           – ∞
                                                                                     2
                                                              2
                                Parseval’s theorem       ∫  ∞  xt() d t        ∫  ∞  Xf() d f
                                                         – ∞                   – ∞
                       the amplitude spectral density gives a continuous display of the amplitude density spectrum, which in
                       this case is in the form of impulses, rather than just a number.
                         Similarly the Fourier transform of a train of impulses of the form
                                                             ∞
                                                                (
                                                     pt() =  ∑  δ tnT)                          (23.27)
                                                                  –
                                                            n=∞
                                                             –
                       is given by
                                                          ∞
                                                                           1
                                                Pf() =  1 ∑ δ fkF s ), F s =  ---               (23.28)
                                                             (
                                                       ---
                                                               –
                                                       T                   T
                                                         k=∞
                                                          –
                       Energy and Power Spectral Density 6
                       Suppose x(t) is an aperiodic signal with a Fourier transform X( f ), then its energy is given by
                                                                2
                                            E =  R xx 0() =  ∫  ∞  xt() d =  ∫  ∞  Xf() d f     (23.29)
                                                                             2
                                                                  t
                                                          – ∞         – ∞
                       This is Parseval’s theorem and it shows that the principle of conservation of energy in the time and
                       frequency domains holds. The amplitude spectrum X( f ) can be expressed as
                                                     Xf() =  Xf() ∠ Xf()
                      ©2002 CRC Press LLC
   702   703   704   705   706   707   708   709   710   711   712