Page 780 - The Mechatronics Handbook
P. 780

0066_Frame_C24  Page 28  Thursday, January 10, 2002  3:45 PM










                                        i  (t)  R 1            Op.Amp.
                                        R1
                                                      v (t)
                                                       +
                                                              +        v (t)  R 3
                                                                       −
                                                              −
                                                            −
                                 v (t)       C 1    2 R                             C 3
                                 i                                                       v (t)
                                                                            v  (t)        o
                                                                            C3

                       FIGURE 24.13  Electronic circuit.

                         The reader may wish to check that the state space models used to describe signals in subsection “Signals
                       and State Space Description” are uncontrollable. Indeed, it is always true that any state space model
                       where B = 0 is completely uncontrollable.
                       Loss of Controllability
                       Lack of controllability is sometimes a structural feature. However, in some other cases, it depends on the
                       numerical value of certain parameters. We illustrate this in the following example.

                       Example 24.13
                       Consider the electronic circuit shown in Fig. 24.13.
                         We first build a state space model for the circuit. We choose, as state variables, x 1 (t) = i R1 (t) and x 2 (t) =
                       v C3 (t). Using first principles on the left half of the circuit we have that

                                        d
                                                                          v +
                                 i C1 =  C 1 ----- v i –(  v + ),  i R1 =  v i –  v +  i R2 =  -----,  i C1 =  i R2 –  i R1  (24.160)
                                                          --------------,
                                        dt                  R 1          R 2
                       This yields
                                             di R1 t()  ( R 1 +  R 2 )  1
                                             ---------------- =  −----------------------i R1 t() + -----------------v i t()  (24.161)
                                               dt       C 1 R 1 R 2  C 1 R 1 R 2
                                                    v + t() =  −R 1 i R1 t() + v i t()         (24.162)

                       And, similarly, from the right half of the circuit we obtain
                                               dv C3 t()   1          1
                                               ----------------- =  −-----------v C3 t() +  -----------v − t()  (24.163)
                                                  dt      R 3 C 3    R 3 C 3

                                                        v o t() =  v C3 t()                    (24.164)
                         The (ideal) operational amplifier ensures that v + (t) = v − (t), so we can combine the state space models
                       given in Eqs. (24.161)–(24.164) to obtain

                                         di ()      ( R +  R )              1
                                             t
                                                         2
                                                      1
                                           R1
                                         -----------------  – -----------------------  0  i R1 t()  ------------------
                                           dt   =    C R R  2           +  C R R 2  v i t()    (24.165)
                                                                             1
                                                      1
                                                                           1
                                                       1
                                         dv ()        R       1   v C3 t()  1
                                             t
                                                       1
                                           C3
                                         ------------------  – ------------  – ------------  ------------
                                           dt        R C 3   R C  3        C R 3
                                                                            3
                                                       3
                                                              3
                                                     v o t() =  [ 01]  i R1 t()                (24.166)
                                                                  v C3 t()
                       ©2002 CRC Press LLC
   775   776   777   778   779   780   781   782   783   784   785