Page 787 - The Mechatronics Handbook
P. 787

0066_Frame_C24  Page 35  Thursday, January 10, 2002  3:45 PM










                                                           Op.Amp.
                                                                    i  (t)  R 1
                                               R 3  v (t)           R1
                                                     +    +      v (t)
                                                                 -
                                                          −
                                         v (t)
                                          i   v  (t)  C 3                        v (t)
                                              C3                             2 R
                                                                        C 1       o
                       FIGURE 24.14  Electronic circuit.

                         And for the right half, we have


                                             di R1 t()   R 1 +  R 2   1
                                             ---------------- =  –  ----------------- i R1 t() + -----------------v_ t()  (24.204)
                                               dt       C 1 R 1 R 2   C 1 R 1 R 2
                                              v o t() =  –  R 1 i R1 t() + v_ t()              (24.205)

                         The operational amplifier, in voltage follower connection, ensures that v + (t) = v − (t), so we can combine
                       the state space models given in Eqs. (24.202)–(24.205):

                                          dv ()       1
                                              t
                                           C3
                                          ------------------  – ------------  0  1
                                            dt   =   R C           v C3 t()  +  ------------
                                                                           R C v i t()
                                                      3 3
                                          di ()       1     R +  R  i R1 t()  3 3              (24.206)
                                             t
                                           R1
                                                             1
                                          ----------------  ------------------- – ------------------- 2  0
                                            dt      C R R   C R R
                                                     1 1 2   1 1  2
                                                         v C3 t()
                                           v o t() =  [ 1 –  R 1 ]                             (24.207)
                                                          i R1 t()
                         The observability matrix is given by
                                                                   1        – R 1
                                              [
                                            ΓΓ Γ Γ C, A] =  C  =           R +  R              (24.208)
                                             c
                                                                 1
                                                                       1
                                                                            1
                                                       CA      −------------ –  ------------  ------------------ 2
                                                                R C 3  R C 1  R C  1
                                                                 3
                                                                            2
                                                                      2
                         To determine the complete observability, or otherwise, we need to compute the matrix determinant
                                                               1
                                                (
                                                   [
                                             det ΓΓ ΓΓ C, A]) =  ------------------ –(  R 1 C 1 +  R 3 C 3 )  (24.209)
                                                  c
                                                            R 3 C 3 C 1
                       from where we conclude that the model system is completely observable if and only if, R 1 C 1 ≠  R 3 C  , 3
                       which is the same condition we obtained in Example 24.13.
                         Applying Laplace transform to Eqs. (24.204)–(24.203) we obtain the transfer function from V i (s) to V o (s):
                                                                     1
                                                                            1
                                            V o s()  V + s() V o s()  s +  ------------  ------------
                                                                           R C
                                                                    R C
                                                                         ⋅
                                            ------------ =  ------------- ------------- =  ----------------------- ------------------  (24.210)
                                                                       1
                                                                            3
                                                                              3
                                                                     1
                                                                   R +
                                            V i s()  V i s() V − s()  s + ------------------ s +  ------------
                                                                              1
                                                                      R
                                                                       2
                                                                    1
                                                                   R R C 1   R C  3
                                                                              3
                                                                      2
                                                                    1
                       ©2002 CRC Press LLC
   782   783   784   785   786   787   788   789   790   791   792