Page 201 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 201

188                              Properties of Vibrating Systems   Chap. 6

                              where  A  is the  diagonal  matrix of the  eigenvalues.
                                                            A,  0   0
                                                       A    0   A2  0                     (6.7-7)
                                                            0   0   A3
                              Example 6.7-1
                                  Verify  the  results  of  the  system  considered  in  Example  5.1-1  (see  Fig.  6.7-1)  by
                                  substituting  them  into  the  equations of Sec.  6.7.

                                                                 I
                                     |--W A r- m  —W W —  ¿Im^VWV-p
                                                                     Figure 6.7-1.
                              Solution:  The  mass  and  stiffness matrices  are
                                                         1   0           2   - 1
                                                   M = m  0   2  K = k  -1   2
                                                  eigenvectors for Example 5.1-1 are
                                                       (o'm             10 '

                                                  A,  =  —r -   =  0.634   ^1  =
                                                    *    k               1.000 /

                                                       (oim             1- 2.73
                                                  A2  =  —^—  =  2.366  4>2 =  1.00
                                  Forming the  modal  matrix  F, we  have
                                                     ’0.731   -2.73
                                                 P =  1.00    1.00

                                                        0.731   1.0  o ’ 0.731  -2.73
                                              P^MP =
                                                      -2.73   1.0    2  1
                                                      2.53   0     ^11  0
                                                      0    9.45     0  M22
                                  Thus,  the  generalized  mass  are  2.53  and 9.45.
                                       If instead  of  P  we  use  the  orthonormal  modes, we obtain
                                                 1  f 0.731' \   / - 2 . 7 3 \ '  0.459  - 0 . 8 8 8
                                          P =               1
                                               i / l 5 3   ' \1.00  , /   \  1 .0 0 /  0.628  0.3253
                                                0.459  0.628  1  0  0.459   - 0.888'  ■1.00  0

                                               - 0.888  0.325  0  2  0.628  0.325  0   1.00
                                                0.459  0.628  2  - 1  0.459  - 0.888’
                                       P^KP
                                               - 0.888  0.325  - 1  2 _ 0.628  0.325 _
                                                                 0
                                               0.635   0
                                               0    2.365    0   A.
                                       Thus,  the  diagonal  terms  agree with the  eigenvalues of Example  5.1-1.
   196   197   198   199   200   201   202   203   204   205   206