Page 348 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 348

Sec. 10.8   Generalized Force Proportional to Displacement     335


                                  From  the second  integral  for  Q,
                                                   1.200   - 0.100  -0.600   0.100
                                                  - 0.100   0.133    0      -0.0166
                                                  -0.600    0        0.600  - 0.100
                                                   0.100   -0.0166  - 0.100  0.0333
                                  By adding the  two matrices,  the generalized force becomes
                                                     2.057  -0.150  -1.029   0.10643  V-
                                        El i        -0.150   0.2143  -0.01429-0.0262
                                         I  \  El   -1.029  -0.01429  1.0286  -0.1643
                                                     0.1064-0.02612-0.1643   0.0571
                                              El (
                                               /3  (  El  HV
                              It  is  now necessary  to  choose  a  numerical  value  for  the  rotation  parameter
                                       and  combine  the  previous  equation  with  the  stiffness  matrix.  This was
                              done  for rotation  parameters 0,  1,  2,  and  4 to obtain  the  computer results for the
                              eigenvalues and eigenvectors. Because the previous matrices fed into the computer
                              are those for the two-element beam with each element of length  /, the eigenvalues
                              are those for a beam of length 21.
                                  Examination of the eigenvalue expression  indicates that for a beam of length
                              /  with  each  element  of  length  //2,  the  length  /  must  be  replaced  by  1/2  in  the
                               TABLE 10.8-1  COMPUTER RESULTS FOR TWO-ELEMENT ROTATING BEAM OF LENGTH /

                                          i    A,  for Beam of Length 21               Exact
                                 El                                   " ' / T    mE
                                          1          0.001841              3.51         3.515
                               0          2          0.07348              22.22         22.034
                                          3          0.84056              75.15        61.697
                                          4          7.08106             218.1         120.90
                                          1          0.0035169             4.861
                               1          2          0.08445              23.82
                                          3          0.86754              76.35
                                          4          7.13759             219.0

                                          1          0.0049532             5.77
                               2          2          0.095627             25.35
                                          3          0.894749             77.54
                                          4          7.19323             219.8
                                          1          0.0103809             8.35
                               4          2          0.158008             32.58
                                          3          1.04317              83.72
                                          4          7.83817             229.5
   343   344   345   346   347   348   349   350   351   352   353