Page 344 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 344

Sec. 10.8   Generalized Force Proportional to Displacement     331


                                  generalized  force  associated  with  the  load  fi^xmdx,  which  is  applicable  to  the  first
                                  element.
                                                  “0.4286  0.01429/  -0.4286  0.06429/  ■  fi'i'i
                                                          0.05714/2  -0.01429/  -0.009524/2  Ö,
                                       {Ö,}  =                      0.4286   -0.06429/  <
                                                                              0.02381/2
                              Example  10.8-3
                                  Using  one  element,  determine  the  equation  of  motion  of  the  helicopter  blade  of
                                  length  /  rotating  at  speed  ii.  Assume  the blade  to be  rigidly fixed  to  the  rotor shaft.
                              Solution:  The mass  and  stiffness terms for the  single element of length  /  are
                                                                         -j (
                                                  156   22/    54    -13/
                                            ml    22/    4/2   13/   -3/2        ml
                                           420                            <      420  MV
                                                  54    13/    156   - 22/  ¿’2
                                                 -13/   -3 /  - 22/    4/2  t ^2 >
                                                                           /
                                                   12    61   -   12   61
                                             El    61    4/2    -61    2/2
                                                 -   12   -61   12   -61    Vi
                                                   61    2/2    -61    4/2  ö j
                                  The term due to rotation is found from the generalized force  Q given in Eq. (10.8-6).
                                  For its evaluation,  the  integral involved  is

                                                       '
                                                         '
                                               til2/ ( X ( (pjipj dr ' dx = mEi^l f  ^  [^(p](p':ld^  Id^
                                                   '
                                                  *()  •'o           •'()  L*'o
                                  where
                                                                        1
                                                         <p\  =  ( - 6 i  +  6 ^ ^ )j
                                                           =  1  -  4^  +  3^2
                                                          '
                                                         <p,  =  (6^  -   6 f- ) \
                                                         ^ ;=   - 2 i   +  3f2
                                      Substituting these  into  the  previous  integral, we obtain the  result
                                                0.4286    0.01429/   1 -   0.4286  0.6429/  iv^\
                                                0.0142/   0.05714/2  1 -0.01429/  -0.009524/2
                                         mQ}l                      1

                                               -   0.4286  -0.01429/   1  0.4286  -0.06429/  V2
                                             -  0.06429/  -0.009524/2  1 -0.06429/  0.02381/2  -
   339   340   341   342   343   344   345   346   347   348   349