Page 347 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 347

334                      Introduction to the Finite Element Method   Chap. 10

                                       The new integral  to be evaluated  is
                                                              rl
                                                         mil^l /  / /  (p](pj drdx
                                                                    '
                                  which  has been carried out  and  is equal  to
                                                       0.600   0    -0.600   0.100/
                                                             0.100/2   0    -0.0166/2
                                              n   -  mQ}l
                                                                     0.600   -0.100/
                                                                             0.0333/2
                              Assembling  Matrices for Two-Element Beam

                              For  the  two-element  beam,  the  assembled  matrices  are  6 x 6 .   However,  because
                                     =0,  the first two columns and  rows are  eliminated  and we obtain  a 4  X  4
                              matrix.

                                   Mass
                                          ■ 156   22      54   -13  1   1      ■ 'c,  =  O'

                                            22     4      13    - 3   1             =  0
                                      ml    54    .3  r  156   -2 2    54   -13
                                      420            1   156     22  1           < 02
                                           -13   - 3   1    -2 2  4  1  13   -3
                                                     1             1
                                                    T  ■                          V 3
                                                     1    54     13   156   -2 2
                                                     1
                                                     1                           .^3
                                                        -13     -3   -2 2     4_
                                                  312    0     54  -1 3 “ <V2\
                                             ml     0    8     13   -3   62
                                                                        7 \
                                            420    54   13    156  -22   ^’3
                                                . -13   -3   -22      4_
                                   Stiffness
                                                   r  24    0   -12
                                                                       t
                                                                          '
                                                                          il^2
                                                       0    8    - 6    )  1 ^2
                                                 E l
                                                     - 12  - 6   12
                                                 P                    - t  V3
                                                       6    2    - 6   A 1  1^3
                                   Generalized force.  From  the first  integral for  Q, we  have
                                                0.8572   -0.0500    -0.4286    0.06429
                                              -0.0500     0.0810    -0.01429  -0.009524
                                              -0.4286    -0.01429    0.4286   -0.06429
                                                0.06429  -0.009524  -0.06429   0.02381
   342   343   344   345   346   347   348   349   350   351   352