Page 213 - Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
P. 213
184 Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
Fanning, T.H.,Brunett,A.J.,Sumner, T.(Eds.),2017. The SAS4A/SASSYS-1 safetyanalysiscode
system. Nuclear Engineering Division, Argonne National Laboratory, USA. ANL/NE-16/19.
Geffraye, G., Antoni, O., Farvacque, M., Kadri, D., Lavialle, G., Rameau, B., Ruby, A., 2009.
CATHARE 2 V2.5_2: a single version for various applications. In: NURETH-13,
Kanazawa City, Japan.
Hu, R., 2017. A fully-implicit high-order system thermal-hydraulics model for advanced
non-LWR safety analyses. Ann. Nucl. Energy 101, 174–181.
Kazimi, M.S., Carelli, M.D., 1976. Heat transfer correlation for analysis of CRBRP assemblies.
Westinghouse Report, CRBRP-ARD-0034.
Kolev, N.I., 2011. Multiphase Flow Dynamics 1. Springer-Verlag, Berlin, Germany.
Lyon, R.N., 1951. Liquid metal heat transfer coefficients. Chem. Eng. Prog. 47, 75–79.
Martelli, D., Forgione, N., Barone, G., di Piazza, I., 2017. Coupled simulations of the NACIE
facility using RELAP5 and ANSYS FLUENT codes. Ann. Nucl. Energy 101, 408–418.
Mikityuk, K., 2009. Heat transfer to liquid metal: data and correlation for tube bundles. Nucl.
Eng. Des. 239, 680–687.
OECD/NEA, 2015. Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials
Compatibility, Thermal-Hydraulics and Technologies. OECD/NEA, Paris, France.
Oriolo, F., De Varti, A., Fruttuoso, G., Leonardi, M., Bocci, S., Forasassi, G., 2000. Modifiche
del Codice RELAP5 versione MOD3.2β per la Simulazione di Sistemi Refrigerati con
leghe di Pb o Pb-Bi. RL 031/00. Universita ` di Pisa, Italy.
Polidori, M., 2010. Implementation of Thermo-Physical Properties and Thermal-Hydraulic
Characteristics of Lead-Bismuth Eutectic and Lead on CATHARE Code. ENEA Technical
Report NNFISS – LP1 – 001, RdS/2010/51, Italy.
RELAP5/Mod.3.3, 2003. RELAP5/Mod.3.3 Code Manual, Volume II. Appendix A: Input
Requirements, Nuclear Safety Analysis Division.
Seban, R.A., Shimazaki, T.T., 1950. Heat transfer to a fluid flowing turbulently in a smooth pipe
with wall at constant temperature. Trans. Am. Soc. Mech. Eng. 73, 803–809.
Sobolev, V., 2011. Database of thermophysical properties of liquid metal coolants for GEN-IV.
SCK-CEN, Mol, Belgium.
Stempniewicz, M.M., 2016. SPECTRA Sophisticated Plant Evaluation Code for Thermal-
Hydraulic Response Assessment, Version 3.61, Volume 1 – Program Description, Volume
2 – User’s Guide, Volume 3 – Subroutine Description, Volume 4 – Verification and Val-
idation. NRG report K6202/MSt-160830, Arnhem, The Netherlands.
Taler, D., 2016. Heat transfer in turbulent tube flow of liquid metals. Procedia Eng.
157, 148–157.
Tarantino, M., Gaggini, P., Di Piazza, I., Agostini, P., Forgione, N., Martelli, D., Barone, G., 2013.
CIRCE experimental report. ENEA-Ricerca Sistema Elettrico, ADPFISS-LP2-027, Italy.
Todreas, N.E., Kazimi, M.S., 2012. Nuclear Systems, Vol. 1: Thermal Hydraulic Fundamentals.
CRC Press, Boca Raton, FL.
Ushakov, P.A., Zhukov, A.V., Matyukhin, N.M., 1977. Heat transfer to liquid metals in regular
arrays of fuel elements. High Temp. 15, 868–873.
Zhukov, A.V., Leonov, V.N., et al., 2002. An experimental study of heat transfer in the core of a
BREST-OD-300 reactor with lead cooling on models. Therm. Eng. 49 (3), 175–184 (trans-
lated from Teploenergetika).
Further reading
RELAP5-3D©, 2009. RELAP5-3D© Code Manual Volume IV: Models and Correlations.
INEEL-EXT-98-00834, Vol. IV, Revision 3.0.