Page 128 - Thermodynamics of Biochemical Reactions
P. 128

7.2 Further Transformed Gibbs Energy at Specified Oxygen Concentration   125


            7.2  FURTHER TRANSFORMED GIBBS ENERGY AT
                 SPECIFIED OXYGEN CONCENTRATION


         In  order  to  introduce the  chemical potential  of  molecular  oxygen as  a  natural
         variable, the following Legendre transform is used to define a further transformed
         Gibbs energy G” (Alberty, 1996b):
                                  G” = G‘ - n:(O2)p’(O2)                 (7.2-1)

         where nh(0,)  is the amount of  molecular  oxygen in the system, free and bound.
         Substituting  G” = C   and  G‘ = C p:dn:  (equation  7.1-2)  yields  the  following
         expression  for  the  further  transformed  chemical  potential  p;  of  reactant  i
         (i = 0 - 4).

                                  P:’  = p; - N&(OZ)P‘(02)               (7.2-2)

         where N,(02) is  the number  of  0, molecules bound  by  i.  Note that p”(0,)  = 0.
         Using  equation  7.2-2 to  eliminate p’(T),  p‘(T(02)), p‘(T(O,),),  p‘(T(0J3),  and
         F’(T(O~)~) from equation 7.1-1 yields
              dG‘ = -S‘dT+  VdP + p”(T)dn’(T) + p”(T(02))dn’(T(02))

                    + C1”(T(02>2)dn’(T(oZ>,)   + p”(T(02)3)dn‘((T(02)3)
                    + p”(T(02),)dn’(T(Oz)4) + p‘(O2)dn;(O2) + RTln(lO)n,(H)dpH
                                                                         (7.2-3)

         Taking the differential of  G” in equation 7.2-1 yields

                         dG” = dG‘ - n:(02)dp’(0,)  - p’(Oz)dnL(02)      (7.2-4)
         Substituting equation 7.2-3 yields

                   dG“ = -S’dT+  VdP + kt”(T)dlI’(T) + p”(T(O,))dn’(T(O2))
                         f ~”(T(02>2>dn’(T(02)2) + p”(T(02),>dn’((T(02)3)

                         + p”(T(O,),)dn’(T(O,),)   - nh(o,>dP‘(oz>
                         + RTln(lO)n,(H)dpH                              (7.2-5)
         At specified 7: P, p’(02), and pH,


           (dG‘’)TP   ic (0,)pH  = p”(T)dn’(T) + p”(T(02))dn’(T(02))  + p”(T(02>2)dn’(T(02>2)
                          f ~”(T(02>3)dn’((T(02>,) + p”(T(02>,>dn’(T(o,>,)   (7.2-6)

         The four reactions  at specified ~’(0~) can be written  as

                           T = T(0,)                                     (7.2-7)


                                                                         (7.2-8)


                                                                         (7.2-9)


                                                                         (7.2- 1  0)


          These reactions do not balance oxygen because its chemical potential is specified.
          At  specified [O,],  these five  forms of  hemoglobin  are pseudoisomers,  and they
          have  the  same  further  transformed  chemical  potential:  p”(T) = p”(T(0,))  =
   123   124   125   126   127   128   129   130   131   132   133