Page 255 - Thermodynamics of Biochemical Reactions
P. 255

Apparent Equilibrium Constants   255



                                              10
                 h  (2.95121 lo6 +  3.99052 10   h)
                               6                10 h2
                1 +  2.95121 10  h +  1.99526 10
         (b)  This equation can be integrated to obtain lnp:

                Integratel(nH/h),hl

                                   -7
                1. Log[3.39624 10     +  hl  +  1. Log[0.000147571 +  hl
         This should be lnp, which is




                                    6                10  2
                Log[l +  2.95121 10  h +  1.99526 10  h ]
         except for an integration constant.
         We can compare the two expressions for In p by calculating numerical values at pH 2,2.5, 3, 3.5, ... 10:

                ph=Table[n,{n,2,10,.5}]
                 I2, 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10.1




                                                                                                     -6
                 I-,  1   0.00316228, 0.001, 0.000316228, 0.0001, 0.0000316228, 0.00001, 3.16228 10  ,  1. 1(
                  100
                                                                                                       -10
                   3.16228        1.       3.16228        1.        3.16228 lo-’,  1. lo-’,  3.16228 10    ,  1.
                 LOg[p]/.h->hh

                 I14.521, 12.2494, 10.0391, 7.98259, 6.20586, 4.73863, 3.48147, 2.35442, 1.37906, 0.6602:
                   0.0892422, 0.0290869, 0.00928946, 0.00294688, 0.000932821, 0.000295078}

         These are the values of In p calculated from pK1 and pK2.

                 Integrate[(nH/h),hl/.h->hh

                 {-9.19566, -11.4672, -13.6775, -15.734, -17.5108, -18.978, -20.2352, -21.3622, -22.3376,
                   -23.4579, -23.6274, -23.6875, -23.7073, -23.7137, -23.7157, -23.7163)

         These are the values of In p calculated by integration of the binding curve (that is, nH versus h)

                 (Integrate[ (nH/h) ,hI/.h->hh)-(Log[pl /.h->hh)
                 {-23.7166, -23.7166, -23.7166, -23.7166, -23.7166, -23.7166, -23.7166, -23.7166, -23.711
                   -23.7166, -23.7166, -23.7166, -23.7166, -23.7166, -23.7166, -23.7166)
         This is the integration constant.  Now calculate values of p at 0.5 pHs.




                             6
                 {2.02472  10 ,  208854., 22904.2, 2929.44, 495.634, 114.275, 32.5065, 10.5318, 3.97106, 1.
                   1.29529, 1.09332, 1.02949, 1.00931, 1.00292, 1.00091, 1.00027)
   250   251   252   253   254   255   256   257   258   259   260