Page 321 - Thermodynamics of Biochemical Reactions
P. 321

Matrices in Chemical and Biochemical Thermodynamics   321



                TableFonu [nutrexpected, TableHeadings-> { { *lrxlln, "rx2 'I,  11rx311, *1rx4" 1, { "ATP4-
                'I, "H+", "H20", "HP042-", "ADP3-", "HATP3- " , "HADP2- " , "H2P04-" 1 } 1
                      ATP4-    H+   H20    HP042-   ADP3-    HATP3-    HADP2-   H2P04-
                rxl    -1      1     -1    1        1        0         0        0
                rx2    1       1     0     0         0       -1        0        0
                rx3    0       1     0     0         1       0         -1       0

                rx4    0       1    0      1         0       0         0        -1
         We can check whether NullSpace[a]  and nuexpected are equivalent by row reducing each of them.

                                                  1
                TableForm [RowReduce [NUllSgace [a] 1
                1   0  0   0  -   1  -   1  1    0
                0    1   0   0   1     0    -10
                0    0   1   0   0     1-1-1
                0   0   0   1  -   1   0    1  -   1
                TableForm[RowReduce[nutrexpectedll

                1   0  0   0  -   1   -  1   1   0
                0    1   0   0   1     0    -10
                0    0   1   0   0     1-1-1
                0   0   0   1  -   1   0    1  -   1

         Since these last two matrices are identical, NullSpace[a]  and nuexpected are equivalent.

         5.3  (a)  Construct the conservation  matrix A' for the hydrolysis of ATP to ADP in terms of reactants.  (b)  Calculate a basis
         for the stoichiometric matrix from the conservation matrix and show that it is consistent with ATP + HI 0 = ADP + Pi.

         (a)  Construct the conservation matrix for the hydrolysis of ATP to ADP in terms of reactants.




                TablePorm[aa,TableHeadings->{ {asCmr, "O", "P"), {"ATP", "H20", "ADP", ''Pi''}  11
                     ATP   H20   ADP    Pi
                c    10    0      10    0
                0  13      1      10    4

                P    3     0     2      1

                TableForm[RowReduce[aal ,TableHeadings->{ {llATP1l, 11H20m1, a'ADP1l), {''ATP", "H20", "ADP" , ''Pi" 111
                       ATP   H20    ADP   Pi
                ATP    1     0      0     1
                H20    0     1      0     1

                ADP    0     0      1     -1
         (b)  Calculate a basis for the stoichiometric number matrix from the conservation matrix.

                TableForm[nu=NullSgace[aa] ,TableHeadings->{ {"rx"}, {"ATP", "H20". IIADPml, "Pi1'} 11

                      ATP   H20    ADP   Pi
                 rx   -1    -1     1     1
   316   317   318   319   320   321   322   323   324   325   326