Page 332 - Thermodynamics of Biochemical Reactions
P. 332

332     Mathematica Solutions to Problems


         The standard Gibbs energies of formation in kJ mol-'are  used to construct Ink.




                {O,  183.665, 458.779, 442.159, 632.065)

         The initial composition matrix is given by

                noa=C0,.01,.01,.01,0};
                (0,  0.01, 0.01, 0.01, 0)


         The amounts of the species at equilibrium (in the order used above) are given by

                                                [
                equcalcc [as-,lnk-,no-l  :=Module {l,x,b,ac,m,n,e,k},
                (*  aseconservation matrix
                Ink=-(l/RT)(Gibbs energy of formation vector at T)
                nozinitial composition vector *)
                (*setup*)
                (m,n}=Dimensions [as1 ;
                b=as . no;
                ac=as;
                (*Initialize*)
                l=LinearSolve[  as.Transpose[asl,-as.(lnk+Log[nl)  I;
                ( *Solve*
                Do[ e=b-ac. (x=EA (lnk+l.as) );
                If [ (lOA-lO)>Max[ Abs [el I,  Break[] I  ;
                l=l+LinearSolve[ac.Transpose[as*Table~x,~m~~~,e~,
                Ck,10011;
                If [  k=lOO,Return[llAlgorithm Failed"] 1 ;
                Return [XI
                I
                equcalcc Caa, lnka,noal

                            -7
                 11.70726 10  , 0.00354638, 0.00999983, 0.00354655,
                   0.00645362)

                TableFonn[ {egucalcc [aa, lnka,noa] },TableHeadings->{ {"c/M"), ("H",11Mg",11H2P04-","HP042-
                I*, "MgHP04 ID 1 1 I
                       H               Mg            H2 PO4 -     HP042-        MgHP04
                                 -7
                c/M    1.70726 10      0.00354638  0.00999983  0.00354655       0.00645362
         This problem can also be solved using the stoichiometric number matrix for the two reactions and equcalcrx
         H~  po0 - = H+ + HPO~ 2-   K1= 6.05499* IO"-8
         MgHP04- = Mg2+ + HP04'-   Kz= 1.9489*10"-3
         The transformed stoichiometric number matrix is given by







                TableFornlE tnual
                1   0   -  1   1   0
                 0   1   0    1-1
   327   328   329   330   331   332   333   334   335   336   337