Page 328 - Thermodynamics of Biochemical Reactions
P. 328

328     Mathematica Solutions to Problems




         (a) The stoichlometric number matrix for glycolysis













                TableForm[nu2,TableHeadings->{n~es2,{1,2,3,4,5,6,7,8,9,lO}}l
                          1     2    3    4    5     6    7    8     9    10
                G1 c      -  1  0    0    0    0     0    0    0     0    0
                ATP       -  1  0    -  1  0    0    0    1     0    0    1
                ADP       1     0    1    0     0    0    -1    0    0    -1

                NADOX     0    0     0    0     0    -  1  0    0    0    O
                 NADredO        0    0    0     0    1    0     0    0    0
                 Pi       0     0    0    0     0    -  1  0    0    0    0
                 G6P      1   -  1   0    0     0    0    0     0    0    0
                 F6P      0     1  -   1  0     0    0    0     0    0    0

                 FBP      0     0    1   -  1  0     0    0     0    0    0
                 DHAP     0     0    0    1   -  1   0    0     0    0    0
                 13BPG    0     0    0    0     0    1    -1    0    O    0
                 3PG      0     0    0    0     0    0    1   -  1   0    0

                 2 PG     0     0    0    0     0    0    0     1  -   1  0
                 PEP      0     0    0    0     0    0    0     0    1-1
                 GAP      0     0    0    1     1    -  1  0    0    0     0
                 PY r     0     0    0     0    0    0     0    0    0     1

          This is Fig. 6.1.
          (b) Use mathematica to type out the reactins of glycolysis

                 mkeqm [c-List , s-List ] : =Map [Max [ #,  01 &,  -cl . s->Mag [Max I#,  01 &,  Cl . S

                 nameMatrix [m-Li S t , s-Lis t 1 : =Map [mkeqm [ # , s 1 & ,ml



                 {ATP  +  GlC  ->  ADP  +  G6P,  G6P  ->  F6P,  ATP  +  F6P  ->  ADP  +  FBP,  FBP  ->  DHAP  +  GAP,
                   DHAP  ->  GAP,  GAP  +  NADox +  Pi  ->  13BPG  +  NADred,  13BPG  +  ADP  ->  3PG  +  ATP,
                   3PG  ->  2PG,  2PG  ->  PEP,  ADP  +  PEP  ->  ATP  +  Pyr}

          (c)  Equation 6.1-3 (v.s = nunet) is given by

                 nu2.{1,1,1,1,1,2,2,2,2,2}
   323   324   325   326   327   328   329   330   331   332   333