Page 340 - Thermodynamics of Biochemical Reactions
P. 340

340     Mathematica Solutions to Problems



                kT2=1.221*10"4;

                kT3=4.049*10"5;

                kT4=6.644*10"5;

                yT=(kT1*o2+2*kT1*kT2*o2"2+3*kTl*kT2*kT3*o2A3+4*kTl*kT2*kT3*kT4*o2A4)/(4*(l+kTl*o2+kTl*k
                                                                 );
                T2*02*2+kTl*kT2*kT3*02"3+kT1*kTl*kT2*kT3*kT4*02~4)




                     1

                 0.8-


                 0.6-



                 0.4-


                 0.2-



                                                      '0 .'OoOOl5'   '  0. OOO06°2
                               5~10-~     0.00001  '



                Plot[Evaluate[o2*D[Log[pT]/4,o2ll,{o2,lOA-8,2*lOA-5~,PlotRange-~~O,l~,~eS~ab~~-
                               1
                >(  [\ ! \ (0\-2\) ", 'I\ ! \ (Y\-T\) "11 i


























         7.4  Calculate the fractional  saturation Y, of the dimer of  human hemoglobin  with molecular  oxygen using the equilibrium
         constants determined by Mills, Johnson, and Akers (1976) at 21.5 OC,  1 bar, pH 7.4, [Cl-] = 0.2 M and 0.2 M ionic strength.
         Make the calculation with the Adair equation and also by using the binding polymomial P, .
   335   336   337   338   339   340   341   342   343   344   345