Page 342 - Thermodynamics of Biochemical Reactions
P. 342

342     Mathematica Solutions to Problems




         (a)  The values of Y, and Y, are calclted as follows:

                kT1=4.397*10"4;

                kT2=1.221*10"4;

                kT3=4.049*10"5;
                kT4=6.644*10"5;





                kD1=3.253*10"6;

                kD2=8.155*10"5;



         The apparent association constant K"(2D=T) for human hemoglobin is given by

                k=(4.633*10"10)*(l+kTl*o2+kTl*kT2*o2A2+kTl*kT2*kT3*o2A3+kTl*kT2*kT3*kT4*o2A4)/( (l+kDl*o
                2+kDl*kD2*02"2)"2);
                                                                                     I' 11;
                plot [Log  [ 10, k] , {02,0,2 * 10 A - 5 1 , AxesLabel - > {  1 \ ! \ ( O\-2 \ ) 1 'I,   logK I























         The dependence of Y on [heme] is given by




         The fractional saturation Y at the highest possible hemoglobin concentration  is given by:

                 yhigh=y/.hme->5*lOA-3;

                 plotlaplot [yhigh, {02,  0,2*1OA-5),PlotRange->{O, 1) ,AxesLabel->{" [\! \ (0\-2\) I ", "Y"1 1 ;
   337   338   339   340   341   342   343   344   345   346   347