Page 451 - Bird R.B. Transport phenomena
P. 451

7
 Table  14.2-2  Asymptotic Results  for  Local Nusselt  Numbers  (Thin-Slit  Flow)"'' ; Nu loc  = 4/* loc
 Constant wall temperature            Constant wall heat flux


                                        /   T
                                                 I
 All  values are                              2 = 0  M  t  M
 local Nu numbers  <>  2B

 \l/2
 Thermal entrance Plug flow  (A) Plug flow                                     (G)
 region^


 (v )B 2  1/3
 z  » 1  Laminar non-  (B)  Laminar non-                                       (H)
 az  9 1/3 Гф  L  a z  V  da
 Newtonian flow   Newtonian flow



 (v )B 2  1/3                               4Гф            l/3
 Laminar  Nu  =  1/3  z az  (C) Laminar  Nu  =  31/3  az                       (I)
 Newtonian flow  3 Г(|)  Newtonian flow


 2
 Plug flow  Nu  -  тг  = 9.870  (D) Plug flow                                  (J)


 Thermally  fully  Laminar non-  Nu  =  4/3?, where fi }  is the lowest  Laminar non-  (K)
 developed  flow  Newtonian flow  eigenvalue of  Newtonian flow

 2
 (v )B 2  d X  2
 z
 az  « 1  + р ф(о)Х„ = 0;  X (±l)  = 0  (E)
 п
 If
 Laminar  Nu  =  7.541  (F)  Laminar  Nu  = Щ    = 8.235                       (L)
 Newtonian flow   Newtonian flow

 2
 " Note: ф(о) = v /(v ),  where a = y/B; for Newtonian fluids  {v )D /az  = 4 RePr(B/z) with  Re = 4B<i;>p/|UL. Here a = k/pC .
 z  z  z              z                    p
 h
  J. M. Valstar and W. J. Beek, De Ingenieur, 75, No. 1, Ch. 1-7 (1963).
 c  2  2
  The grouping  (v )B /az  is sometimes  written as Gz • (L/z) where  Gz = (v )B /aL is called  the Graetz number; here L is the length  of the slit past 2 = 0. Thus the
 z
 z
 thermal entry  region  corresponds  to large  Graetz number.
   446   447   448   449   450   451   452   453   454   455   456