Page 449 - Bird R.B. Transport phenomena
P. 449

Table  14.2-1  Asymptotic  Results  for Local Nusselt  Numbers  (Tube  Flow)"'*; Nu  =  h D/k
        7
             loc     loc
 Constant wall temperature            Constant wall heat   flux

 -4)  т,  : >  ;)
 All  values are  z                 -4)
 local Nu numbers  z = 0                    = 0  t t t t t t t f

 1/2
 Thermal  entrance Plug  flow  (A) Plug flow  Nu =                             (G)
 region c


 (v )D 2                                     2Г(|)  [(v )D 2
                                                       z
 •»  1  Laminar non-  Nu  = -  z  (B)  Laminar non-  Nu =                      (H)
 az                                           91/3
 Newtonian flow   Newtonian flow

                                             2Г(р           l/3
 Laminar  Nu =  1/3  (C) Laminar      Nu =    91/3                             (I)
 Newtonian flow  9  Г©  Newtonian flow



 Plug flow  Nu  =  5.772  (D) Plug flow  Nu =                                  (J)


 Thermally fully  Laminar non-  Nu  = 0\, where  /^ is the lowest  Laminar non-
 developed flow  Newtonian flow  eigenvalue of  Newtonian flow


 « 1
 az
 x
 x; (o)  = o, (i)  = о  (E)
 7  n
 Laminar  Nu  =  3.657  (F)  Laminar  Nu  = Ц =    4.364                       (L)
 Newtonian flow   Newtonian flow

 a  2
  Note: ФШ = v /{v ),  where ^ = r/R and R = D/2; for Newtonian fluids (v )D /az  = RePr(D/z) with Re = D<y>p/(JL. Here a = k/pC .
 z  z  z                         z                    p
 " W. J. Beek and R. Eggink, De Ingenieur, 74, No. 35, Ch. 81-89 (1962); erratum, 75, No. 1, Ch. 7 (1963).
  The grouping (v )D /az  is sometimes written as Gz • (L/z) where Gz = (v )D /aL is called the Graetz number; here L is the length of the pipe past 2 = 0. Thus the
 c  2  2
 z
 z
 thermal entry region corresponds to large Graetz number.
   444   445   446   447   448   449   450   451   452   453   454