Page 635 - Bird R.B. Transport phenomena
P. 635

§20.1  Time Dependent Diffusion  615

                 This gives on  integration

                                         X  = Q  P  exp[-(Z  -  <p) ]dZ + C 2        (20.1-14)
                                                             2
                                               Jo
                 Combining this result with  Eqs. 20.1-11 and  12, we  get

                                                                          2
                                                       2
                                         Г  exp[-(Z  -  <p) ]dZ  j  '  * exp(- W )dW
                               X(Z)  =  1  -  - ^         =  1  -  — I               (20.1-15)
                                           exp[-(Z  -  <p) ]dZ     exp(-W WW
                                                       2
                                                                         2
                                        Jo                     J  -tp
                 Then we  use  the definition  of  the error function  and some  of the properties  of this  function, in
                 particular,  -eri(-ip)  =  erf  <p and  erf  oo =  1 (see §C.6). This leads  to the final  expression  for  the
                 mole fraction  distribution: 1
                                           _  e r f ( Z  erf  l e r f ( Z , )
                                        =  t       y )  +  y  =
                                               erf  oo + erf  (p  1  4- erf <p
                 To get  the function  <p(x ), this mole fraction  distribution has to be substituted  into Eq.  20.1-10.
                                    A0
                 This gives
                                                               2
                                                 1   x   exp(-<p )
                                            <p  = —=-  AQ       —                     (20.1-17)
                                                VTT  1  -  ^ло  1  + erf <p
                 Rather than solving this to get  <p as a function  of x ,  it is easier  to evaluate  x A0  as a function  of <p:
                                                         A0
                                        x A0  =  ^ ^    l —      —                   (20.1-18)
                                                                     2
                                             1  +  [VTT(1  + erf  <p)<p exp <р Г ]
                 A  small  table  of  <p(x ) is  given  in  Table  20.1-1, and  the  concentration profiles  are  shown  in
                                  A0
                 Fig. 20.1-1.
                     We  can now  calculate the rate  of production of vapor  from  a surface  of  area  S.  If  V A  is  the
                 volume  of  A  produced by  evaporation up  to time  t, then

                                             at




                 Table 20.1-1  Table  1  of  <p(x ) and  ф(х )
                                        A0      А0
                     X A0           ф =  <pVjr/x A0

                     0.00   0.0000     1.000
                     0.25   0.1562     1.108
                     0.50   0.3578     1.268
                     0.75   0.6618     1.564
                     1.00     00         00




                     1  J. H. Arnold, Trans. AlChE, 40, 361-378 (1944). Jerome Howard Arnold  (1907-1974)  taught at MIT,
                 the University  of Minnesota, the University  of North Dakota, and the University  of Iowa; he worked  for
                 Standard Oil of California  (1944-1948)  and was  the director of the Contra Costa Transit District
                 (1956-1960).
   630   631   632   633   634   635   636   637   638   639   640