Page 100 - Using ANSYS for Finite Element Analysis Dynamic, Probabilistic, Design and Heat Transfer Analysis
P. 100

probabilistic Design analysis   •   87

                                 lognormal PDF (σ = 0.5)      lognormal PDF (σ = 1)
                           1                           1
                         Probability  0.5            Probability  0.5


                           0                           0
                           0    2   4    6   8   10    0    2   4    6   8   10
                                      x                           x
                                 lognormal PDF (σ = 2)        lognormal PDF (σ = 5)
                           1                          0.8
                                                      0.6
                         Probability  0.5            Probability  0.4
                                                      0.2
                           0                           0
                           0    2   4    6   8   10    0    2   4    6   8   10
                                       x                           x
                        Figure 3.7.  The lognormal cumulative distribution function for four values of s.


                      3.2.4.2  Common Statistics

                       Mean                     e 05s 2
                                                 .
                       Median                  Scale parameter m (= 1 if scale parame-
                                                ter not specified).
                       Mode                      1
                                                e s 2
                       Range                   Zero to positive infinity
                       Standard Deviation          2  2
                                                 e s ( e s  − 1 )
                                                ( e s 2  +  2 )  e s 2  − 1
                       Coefficient of Variation

                       Skewness                 ( ) ( ) ( )          −  3
                                                                  2 2
                                                  2 4
                                                          2 3
                                                 s
                                                         s
                                                                 s
                                                             +
                                                                e
                                                e
                                                        e
                                                     +
                                                               3
                                                       2
                       Kurtosis                    2
                                                 e s  − 1
                          The maximum likelihood estimates for the scale parameter, m, and
                      the shape parameter s are:
                                                        ∧
                                                 ∧
                                                m =  exp()  and
                                                        m
                                                 ∑  N  ( ln ( ) −X  m ) 2
                                                              ∧
                                            ∧ s =   = i 1  i
                                                         N
   95   96   97   98   99   100   101   102   103   104   105