Page 178 - Vibrational Spectroscopic Imaging for Biomedical Applications
P. 178

154    Cha pte r  F i v e


        38.  J. P. Salenius, J. F. Brennan, A. Miller, Y. Wang, T. Aretz, B. Sacks, R. R. Dasari,
           and M. S. Feld, “Biochemical Composition of Human Peripheral Arteries
           Examined with Near-Infrared Raman Spectroscopy,” Journal of Vascular Surgery,
           27:710–719, 1998.
        39. G.  L.  Carr, “Resolution Limits for Infrared Microspectroscopy Explored
           with Synchrotron Radiation,” Reviews of Scientific Instruments, 72:1613–1619,
           2001.
        40.  P. Lasch and D. Naumann, “Spatial Resolution in Infrared Microspectroscopic
           Imaging of Tissues,” Biochimica et Biophysica Acta, 1758:814–829, 2006.
        41.  L. M. Miller and R. J. Smith, “Synchrotrons versus Globars, Point-Detectors
           versus Focal Plane Arrays,” Vibrational Spectroscopy, 38:237–240, 2005.
        42.  J. H. Schachtschneider and R. G. Snyder, “Vibrational Analysis of the n-Paraffins.
           II. Normal Co-ordinate Calculations,” Spectrochimica Acta, 19:117–168, 1963.
        43.  S. M. LeVine and D. L. Wetzel, “In situ Chemical Analyses from Frozen Tissue
           Sections by Fourier Transform Infrared Microspectroscopy: Examination of
           White Matter Exposed to Extravasated Blood in the Rat Brain,” American Journal
           of Pathology, 145:1041–1047, 1994.
        44.  K. M. Gough, M. Rak, M. Bookatz, M. R. Del Bigio, S. Mai, and D. Westaway,
           “Choices for Tissue Visualization with IR Microspectroscopy,”  Vibrational
           Spectroscopy, 38:133–141, 2005.
        45. M. Rak, M. R. Del Bigio, S. Mai, D. Westaway, and K. M. Gough, “Dense-Core and
           Diffuse Aβ Plaques in TgCRND8 Mice Studied with sFTIR Microspectroscopy,”
           Biopolymers, 87:207–217, 2007.
        46.  N. M. Amiali, M. R. Mulvey, B. Berger-Bächi, J. Sedman, A. E. Simor, and A. A.
           Ismail, “Evaluation of Fourier Transform Infrared Spectroscopy for the Rapid
           Identification of Glycopeptide-Intermediate Staphylococcus aureus,” Journal of
           Antimicrobial Chemotherapy, 61:95–102, 2008.
        47.  I. Adt, D. Toubas, J. M. Pinon, M. Manfait, and G. D. Sockalingum, “FTIR
           Spectroscopy as a Potential Tool to Analyze Structural Modifications During
           Morphogenesis of  Candida albicans,” Archives of Microbiology, 185:277–285,
           2006.
        48.  P. Lasch, W. Haensch, D. Naumann, and M. Diem, “Imaging of Colorectal
           Cancer Adenocarcinoma Using FT-IR Microspectroscopy and Cluster Analysis,”
           Biochimica et Biophysica Acta, 1688:176–186, 2004.
        49.  T. J. Römer, J. F. Brennan, G. J. Puppels, A. H. Zwinderman, S. G. van Duinen,
           A. van der Laarse, A. F. W. van der Steen, N. A. Bom, and A. V. G. Bruschke,
           “Intravascular Ultrasound Combined with Raman Spectroscopy to Localize
           and Quantify Cholesterol and Calcium Salts in Atherosclerotic Coronary
           Arteries,” Arteriosclerosis, Thrombosis, and Vascular Biology, 20:478–483, 2000.
        50. K.  M.  Gough, I. M. C. Dixon, D. Zielinski, R. Wiens, and M. Rak, “FTIR
           Evaluation of Microscopic Scarring in the Cardiomyopathic Heart: Effect of
           Chronic AT1 Receptor Blockade,” Analytical Biochemistry, 316:232–242, 2003.
        51. A.  Szeghalmi, S. Kaminskyj, P. Rösch, J. Popp, and K. M. Gough, “Time-
           Fluctuations and Imaging in the SERS Spectra of Fungal Hyphae Grown on
           Nanostructured Substrates,” Journal of Physical Chemistry B, 111:12916–12924,
           2007.
        52.  S. G. W. Kaminskyj and T. E. S. Dahms, “High Spatial Resolution Surface
           Imaging and Analysis Of Fungal Cells using SEM and AFM,”  Micron,
           39:349–361, 2008.
        53.  S. Kaminskyj, and M. Boire, “Ultrastructure of the Aspergillus nidulans hypA1
           Restrictive Phenotype Shows Defects in Endomembrane Arrays and Polarized
           Wall Deposition,” Canadian Journal of Botany, 82:807–814, 2004.
        54.  B. Molenhoff, M. Romeo, M. Diem, and B. R. Wood, “Mie-Type Scattering
           and Non-Beer-Lambert Absorption Behavior of Human Cells in Infrared
           Microspectroscopy,” Biophysical Journal, 88:3635–3640, 2005.
        55.  C. V. Raman and K. S. Krishnan, “The Optical Analog of the Compton Effect,”
           Nature, 121:711, 1928.
        56.  G. Placzek, “U. S. Atomic Energy Commission, UCRL-Trans-524(L); 1962,”
           Translated from Handbuch der Radiologie, 2d ed., E. Marx, (ed.), Akademisch,
           Leipzig, 1934, Vol. 6, Part II, pp. 205–374.
   173   174   175   176   177   178   179   180   181   182   183