Page 178 - Vibrational Spectroscopic Imaging for Biomedical Applications
P. 178
154 Cha pte r F i v e
38. J. P. Salenius, J. F. Brennan, A. Miller, Y. Wang, T. Aretz, B. Sacks, R. R. Dasari,
and M. S. Feld, “Biochemical Composition of Human Peripheral Arteries
Examined with Near-Infrared Raman Spectroscopy,” Journal of Vascular Surgery,
27:710–719, 1998.
39. G. L. Carr, “Resolution Limits for Infrared Microspectroscopy Explored
with Synchrotron Radiation,” Reviews of Scientific Instruments, 72:1613–1619,
2001.
40. P. Lasch and D. Naumann, “Spatial Resolution in Infrared Microspectroscopic
Imaging of Tissues,” Biochimica et Biophysica Acta, 1758:814–829, 2006.
41. L. M. Miller and R. J. Smith, “Synchrotrons versus Globars, Point-Detectors
versus Focal Plane Arrays,” Vibrational Spectroscopy, 38:237–240, 2005.
42. J. H. Schachtschneider and R. G. Snyder, “Vibrational Analysis of the n-Paraffins.
II. Normal Co-ordinate Calculations,” Spectrochimica Acta, 19:117–168, 1963.
43. S. M. LeVine and D. L. Wetzel, “In situ Chemical Analyses from Frozen Tissue
Sections by Fourier Transform Infrared Microspectroscopy: Examination of
White Matter Exposed to Extravasated Blood in the Rat Brain,” American Journal
of Pathology, 145:1041–1047, 1994.
44. K. M. Gough, M. Rak, M. Bookatz, M. R. Del Bigio, S. Mai, and D. Westaway,
“Choices for Tissue Visualization with IR Microspectroscopy,” Vibrational
Spectroscopy, 38:133–141, 2005.
45. M. Rak, M. R. Del Bigio, S. Mai, D. Westaway, and K. M. Gough, “Dense-Core and
Diffuse Aβ Plaques in TgCRND8 Mice Studied with sFTIR Microspectroscopy,”
Biopolymers, 87:207–217, 2007.
46. N. M. Amiali, M. R. Mulvey, B. Berger-Bächi, J. Sedman, A. E. Simor, and A. A.
Ismail, “Evaluation of Fourier Transform Infrared Spectroscopy for the Rapid
Identification of Glycopeptide-Intermediate Staphylococcus aureus,” Journal of
Antimicrobial Chemotherapy, 61:95–102, 2008.
47. I. Adt, D. Toubas, J. M. Pinon, M. Manfait, and G. D. Sockalingum, “FTIR
Spectroscopy as a Potential Tool to Analyze Structural Modifications During
Morphogenesis of Candida albicans,” Archives of Microbiology, 185:277–285,
2006.
48. P. Lasch, W. Haensch, D. Naumann, and M. Diem, “Imaging of Colorectal
Cancer Adenocarcinoma Using FT-IR Microspectroscopy and Cluster Analysis,”
Biochimica et Biophysica Acta, 1688:176–186, 2004.
49. T. J. Römer, J. F. Brennan, G. J. Puppels, A. H. Zwinderman, S. G. van Duinen,
A. van der Laarse, A. F. W. van der Steen, N. A. Bom, and A. V. G. Bruschke,
“Intravascular Ultrasound Combined with Raman Spectroscopy to Localize
and Quantify Cholesterol and Calcium Salts in Atherosclerotic Coronary
Arteries,” Arteriosclerosis, Thrombosis, and Vascular Biology, 20:478–483, 2000.
50. K. M. Gough, I. M. C. Dixon, D. Zielinski, R. Wiens, and M. Rak, “FTIR
Evaluation of Microscopic Scarring in the Cardiomyopathic Heart: Effect of
Chronic AT1 Receptor Blockade,” Analytical Biochemistry, 316:232–242, 2003.
51. A. Szeghalmi, S. Kaminskyj, P. Rösch, J. Popp, and K. M. Gough, “Time-
Fluctuations and Imaging in the SERS Spectra of Fungal Hyphae Grown on
Nanostructured Substrates,” Journal of Physical Chemistry B, 111:12916–12924,
2007.
52. S. G. W. Kaminskyj and T. E. S. Dahms, “High Spatial Resolution Surface
Imaging and Analysis Of Fungal Cells using SEM and AFM,” Micron,
39:349–361, 2008.
53. S. Kaminskyj, and M. Boire, “Ultrastructure of the Aspergillus nidulans hypA1
Restrictive Phenotype Shows Defects in Endomembrane Arrays and Polarized
Wall Deposition,” Canadian Journal of Botany, 82:807–814, 2004.
54. B. Molenhoff, M. Romeo, M. Diem, and B. R. Wood, “Mie-Type Scattering
and Non-Beer-Lambert Absorption Behavior of Human Cells in Infrared
Microspectroscopy,” Biophysical Journal, 88:3635–3640, 2005.
55. C. V. Raman and K. S. Krishnan, “The Optical Analog of the Compton Effect,”
Nature, 121:711, 1928.
56. G. Placzek, “U. S. Atomic Energy Commission, UCRL-Trans-524(L); 1962,”
Translated from Handbuch der Radiologie, 2d ed., E. Marx, (ed.), Akademisch,
Leipzig, 1934, Vol. 6, Part II, pp. 205–374.