Page 176 - Vibrational Spectroscopic Imaging for Biomedical Applications
P. 176
152 Cha pte r F i v e
was provided by Prof. R. A. Dean, North Carolina State University;
Profs. M. D. Piercey-Nomore and J. Sorensen (University of Mani-
toba) provided lichen; all other samples are from SGWK. With the
exception of figures reproduced with permissions, all figures are
from the Gough and Kaminskyj research groups; we thank the fol-
lowing for their contributions: M. Isenor, K. Jilkine, C. L. Liao, A. M.
El-Ganiny, and Dr. S. Gajjeraman.
References
1. R. F. Aroca, Surface Enhanced Vibrational Spectroscopy, John Wiley & Sons Ltd.,
Chichester, 2006, p. 233.
2. K. Kneipp, M. Moskovits, and H. Kneipp, Surface Enhanced Raman Scattering:
Physics and Applications, Springer-Verlag, Berlin, Heidelberg, 2006, p. 221.
3. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced
Raman Scattering Enhancement Factors: A Comprehensive Study,” Journal of
Physical Chemistry C, 111:13794–13803, 2007.
4. S. Nie, Shuming, and S. R. Emory, “Probing Single Molecules and Single
Nanoparticles by Surface-Enhanced Raman Scattering,” Science, 275:1102–1106,
2997.
5. M. Sackmann, S. Bom, T. Balster, and A. Materny, “Nanostructured Gold Surfaces
as Reproducible Substrates for Surface-Enhanced Raman Spectroscopy,” Journal
of Raman Spectroscopy, 38:277–282, 2007.
6. A. M. Schwartzberg and J. Z. Zhang, “Novel Optical Properties and Emerging
Applications of Metal Nanostructures,” Journal of Physical Chemistry C,
112:10323–10337, 2008.
7. W. E. Smith, “Practical Understanding and Use of Surface Enhanced Raman
Scattering/Surface Enhanced Resonance Raman Scattering in Chemical and
Biological Analysis,” Chemical Society Reviews, 37:955–964, 2008.
8. K. Jilkine, K. M. Gough, R. Julian, and S. G. W. Kaminskyj, “A Sensitive
Method for Examining Whole Cell Biochemical Composition in Single Cells
of Filamentous Fungi Using Synchrotron FTIR Spectromicroscopy,” Journal of
Inorganic Biochemistry, 102:540–546, 2008.
9. A. V. Szeghalmi, S. G. W. Kaminskyj, and K. M. Gough, “A Synchrotron FTIR
Microspectroscopy Investigation of Fungal Hyphae Grown under Optimal and
Stressed Conditions,” Analytical and Bioanalytical Chemistry, 387:1779–1789, 2007.
10. S. G. W. Kaminskyj and I. B. Heath, “Studies on Saprolegnia ferax Suggest the
General Importance of the Cytoplasm in Determining Hyphal Morphology,”
Mycologia, 88:20–37, 1996.
11. A. M El-Ganiny, D. A. R. Sanders, and S. G. W. Kaminskyj, “Aspergillus nidulans
UDP-Galactopyranose Mutase, Encoded by ugmA Plays Key Roles in Colony
Growth, Hyphal Morphogensis, and Conidiation,” Fungal Genetics and Biology,
45:1533–1542.
12. de Groot, P. J. W., B. W. Brandt, H. Horiuchi, A. F. J. Ram, C. G. De Koster, and
F. M. Klis, “Comprehensive Genomic Analysis of Cell Wall Genes in Aspergillus
Nidulans,” Fungal Genetics and Biology, 46:S72–S81, 2009.
13. K. A. Pirozynski and D. W. Malloch, “The Origin of Land Plants: A Matter of
Mycotrophism,” Biosystems, 6:153–164, 1995.
14. M. Krings, T. Taylor, H. Hass, H. Kerp, N. Dotzler, and E. Hermsen, “Fungal
Endophytes in a 400-Million-Yr-Old Land Plant: Infection Pathways, Spatial
Distribution, and Host Responses,” New Phytologist, 174:648–657, 2007.
15. R. J. Rodriguez, J. F. White, A. E. Arnold, and R. S. Redman, “Fungal Endophytes:
Diversity and Functional Roles,” New Phytologist, 182:314–330, 2009.
16. S. G. W. Kaminskyj, A. V. Szeghalmi, K. Jilkine, and K. M. Gough, “High Spatial
Resolution Methods for Studying Subcellular Growth and Environmental
Responses of Fungal Hyphae,” FEMS Microbiology Letters, 284:1–8, 2008.