Page 372 - Vibrational Spectroscopic Imaging for Biomedical Applications
P. 372
346 Cha pte r Ele v e n
80. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local
Enhancement of Coherent Anti-Stokes Raman Scattering by Isolated Gold
Nanoparticles,” Journal of Raman Spectroscopy, 34:651–654, 2003.
81. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata,
“Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational
Nanoimaging,” Physical Review Letters, 92:220801, 2004.
82. T. W. Koo, S. Chan, and A. A. Berlin, “Single-Molecule Detection of Biomolecules
by Surface-Enhanced Coherent Raman Scattering,” Optics Letters, 30:1024,
2005.
83. E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-Sensitivity
Coherent Anti-Stokes Raman Scattering Microscopy with Two Tightly
Synchronized Picosecond Lasers,” Optics Letters, 27(13):1168–1170, 2002.
84. H. W. Wang, T. T. Le, and J. X. Cheng, “Label-Free Imaging of Arterial Cells
and Extracellular Matrix Using a Multimodal CARS Microscope,” Optics
Communications, 281:1813–1822, 2008.
85. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W.
Webb, “Live Tissue Intrinsic Emission Microscopy using Multiphoton-Excited
Native Fluorescence and Second Harmonic Generation,” Proceedings of National
Academy of Science U.S.A., 100:7075–7080, 2003.
86. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear Magic: Multiphoton
Microscopy in the Biosciences,” Nature Biotechnology, 21:1369–1377, 2003.
87. X. Deng and M. Gu, “Penetration Depth of Single-, Two-, and Three-Photon
Fluorescence Microscopic Imaging through Human Cortex Structures: Monte
Carlo Study,” Applied Optics, 42:3321–3329, 2003.
88. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light Scattering from Cells:
Finite-Difference Time Domain Simulations and Goniometric Measurements,”
Applied Optics, 38:3651–3661, 1999.
89. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence
of Optical Properties on Two-Photon Fluorescence Imaging in Turbid Samples,”
Applied Optics, 39:1194–1201, 2000.
90. B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems II:
Structure of the Image Field in an Aplanatic System,” Proceeding of the Royal
Society A, 253:358–379, 1959.
91. F. Helmchen and W. Denk, “Deep Tissue Two-Photon Microscopy,” Nature
Methods, 2:932–940, 2005.
92. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, “Video-Rate Confocal
Scanning Laser Microscope for Imaging Human Tissues In Vivo,” Applied
Optics, 38:2105–2115, 1999.
93. J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and Experimental
Characterization of Coherent Anti-Stokes Raman Scattering Microscopy,”
Journal of Optical Society of America B, 19:1363–1375, 2002.
94. E. O. Potma, W. P. d. Boeij, and D. A. Wiersma, “Nonlinear Coherent Four-
Wave Mixing in Optical Microscopy,” Journal of Optical Society of America B,
17:1678–1684, 2000.
95. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. Lin, and X. S. Xie,
“Chemical Imaging of Tissue In Vivo with Video-Rate Coherent Anti-Stokes
Raman Scattering (CARS) Microscopy,” Proceeding of National. Academy of
Science U.S.A., 102:16807–16812, 2005.
96. F. Légaré, C. Pfeffer, and B. R. Olsen, “The Role of Backscattering in SHG Tissue
Imaging,” Biophysical Journal, 93:1312–1320, 2007.
97. O. Nadiarnykh, R. B. LaComb, and P. J. Campagnola, “Coherent and
Incoherent SHG in Fibrillar Cellulose Matrices,” Optics Express, 15:3348–3360,
2007.
98. T. T. Le, C. W. Rehrer, T. B. Huff, M. B. Nichols, I. G. Camarillo, and J. X. Cheng,
“Nonlinear Optical Imaging to Evaluate the Impact of Obesity on Mammary
Gland and Tumor Stroma,” Molecular Imaging, 6:205–211, 2007.
99. I. Barba, M. E. Cabanas, and C. Arus, “The Relationship between Nuclear
Magnetic Resonance-Visible Lipids, Lipid Droplets, and Cell Proliferation in
Cultured c6 cells,” Cancer Research, 59:1861–1868, 1999.