Page 371 - Vibrational Spectroscopic Imaging for Biomedical Applications
P. 371
T issue Imaging with CARS Micr oscopy 345
58. A. Hopt and E. Neher, “Highly Nonlinear Photodamage in Two-Photon
Fluorescence Microscopy,” Biophysical Journal, 80:2029–2036, 2001.
59. A. Schönle and S. W. Hell, “Heating by Absorption in the Focus of an Objective
Lens,” Optics Letters, 23:325–327, 1998.
60. K. Konig, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular Response
to Near-Infrared Femtosecond Laser Pulses in Two-Photon Fluorescence
Microscopy,” Optics Letters, 22:135–136, 1997.
61. Y. Fu, H. Wang, and J. X. Cheng, “Characterization of Photodamage in Coherent
Anti-Stokes Raman Scattering Microscopy,” Optics Express, 14:3942–3951,
2006.
62. T. Helllerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder,
“Monitoring of Lipid Storage in Caenorhabditis Elegans Using Coherent Anti-
Stokes Raman Scattering (CARS) Microscopy,” Proceedings of National Academy
of Science U.S.A., 104:14658–14663, 2007.
63. T. B. Huff and J. X. Cheng, “In Vivo Coherent Anti-Stokes Raman Scattering
Imaging of Sciatic Nerve Tissues,” Journal of Microscopy, 225:175–182, 2007.
64. T. B. Huff, Y. Shi, Y. Yan, H. Wang, and J. X. Cheng, “Multimodel Nonlinear
Optical Microscopy and Applications to Central Nervous System,” IEEE Journal
of Selected Topics in Quantum Electronics, 14:4–9, 2008.
65. T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, “Label-Free
Molecular Imaging of Atherosclerotic Lesions Using Multimodal Nonlinear
Optical Microscopy,” Journal of Biomedical Optics, 12:054007, 2007.
66. G. R. Holtom, B. D. Thrall, B. Y. Chin, H. S. Wiley, and S. D. Colson, “Achieving
Molecular Selectivity in Imaging Using Multiphoton Raman Spectroscopy
Techniques,” Traffic, 2:781–788, 2001.
67. E. O. Potma and X. S. Xie, “Direct Visualization of Lipid Phase Segregation
in Single Lipid Bilayers with Coherent Anti-Stokes Raman Scattering (CARS)
Microscopy,” ChemPhysChem, 6:77–79, 2005.
68. M. Diem, M. Romero, S. Boydston-White, M. Miljkovi, and C. Matthäus,
“A Decade of Vibrational Micro-Spectroscopy of Human Cells and Tissue,
(1994–2004),” Analyst, 129:880–885, 2004.
69. E. M. Vartiainen, H. A. Rinia, M. Muller, and M. Bonn, “Direct Extraction
of Raman Line-Shapes from Congested CARS Spectra,” Optics Express,
14:3622–3630, 2006.
70. H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS
Spectroscopy Using the Maximum Entropy Method: The Main Lipid Phase
Transition,” ChemPhysChem, 8:279–287, 2007.
71. M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot Noise Limited
Heterodyne Detection of CARS Signals,” Optics Express, 15:15207–15213,
2007.
72. G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully,
“Comparison of Coherent and Spontaneous Raman Microspectroscopies for
Invasive Detection of Single Bacterial Endospores,” Proceedings of National
Academy of Science U.S.A., 104:7776–7779, 2007.
73. C. A. Marx, U. Harbola, and S. Mukamel, “Nonlinear Optical Spectroscopy
of Single, Few and Many Molecules: Nonequilibrium Green’s Function QED
Approach,” Physical Review, A, 77:022110, 2008.
74. M. Moskovits, “Surface-Enhanced Spectroscopy,” Reviews of Modern Physics,
57:783–826, 1985.
75. A. Otto, I. Mrozek, H. Grabborn, and A. Akermann, “Surface-Enhanced Raman
Scattering,” Journal of Physics Condensed Matter, 4:1143–1212, 1992.
76. D. S. Chemla, J. P. Heritage, P. F. Liao, and E. D. Isaacs, “Enhanced Four-Wave
Mixing from Silver Particles,” Physical Review B, 27:4553–4558, 1983.
77. M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold
Nanoparticles,” Physical Review Letters, 98:026101–026104, 2007.
78. H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial
Control of Coherent Anti-Stokes Emission with Height-Modulated Gold Zig-
Zag Nanowires,” Nano Letters, in press, 2008.
79. C. K. Shen, A. R. B. d. Castro, and Y. R. Shen, “Surface Coherent Anti-Stokes
Raman Spectroscopy,” Physical Review Letters, 43:946–949, 1979.