Page 160 - Wind Energy Handbook
P. 160

134                        AERODYNAMICS OF HORIZONTAL-AXIS WIND TURBINES


            Because of the nature of the Legendre polynomials only one term in the series of
          Equation (3.159) will produce a net thrust and only one term will produce a yawing
          moment, which is a first moment. Similarly only one term will produce a second
          moment, and so on.
            The unique term in Equation (3.159) which yields a yawing moment is that for
                                 1
          which m ¼ 1, n ¼ 2 and C 6¼ 0, therefore
                                 n
                                          p ffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                  1
                                 P (v) ¼ 3v 1   v ¼ 3ì  1   ì 2               (3:174)
                                                2
                                  2
          and
                                  p ffiffiffiffiffiffiffiffiffiffiffiffiffi  1  p ffiffiffiffiffiffiffiffiffiffiffiffiffi  i
                         1
                                                           2
                                         2
                        Q (iç) ¼ 3iç  1 þ ç tan  1    3i 1 þ ç þ p ffiffiffiffiffiffiffiffiffiffiffiffiffi ,  (3:175)
                         2                     ç                1 þ ç 2
          so
                                           1
                                          Q (i0) ¼ 2i                        (3:175a)
                                           2
          A zero pressure gradient at the rotor axis is not appropriate in this case because the
          pressure distribution is anti-symmetric about the yaw axis, therefore,
                                                           p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                         1
                                            1
                                  1
                                       1
                                                                  2
                       p( ì, ł) ¼ P ( ì)Q (i0)D sin ł ¼ 6iD ì  1   ì sin ł    (3:176)
                                  2    2    2            2
          The pressure distribution is shown in Figure 3.72.
            The yawing moment coefficient is defined by
                                                 M z
                                        C mz ¼                                (3:177)
                                              1   2   3
                                               rU ðR
                                                  1
                                              2
          As before, if the pressure in Equation (3.176) is non-dimensionalized by the free-
                                        2
          stream dynamic pressure (1=2)rU , then
                                        1
                                                        ψ
















              Figure 3.72  The Form of the Pressure Distribution which Yields a Yawing Moment
   155   156   157   158   159   160   161   162   163   164   165